# Ventilation/ Perfusion Relationships

And then some...

### Pulmonary blood flow

Not quite like systemic circulation

[Blood flow] = [blood flow in systemic circulation]

BUT

- Much lower pressures (25/8)
- Much lower resistances
- Hypoxic vasoconstriction!





### Hypoxic vasoconstriction

- Decreases in PA<sub>O2</sub> causes pulmonary vasoconstriction
  - Opposite effect is seen in other vascular beds
- Redirects blood flow to well-ventilated regions of the lung
  - Protective in certain lung diseases (no change in pulmonary resistance)
- Mechanism:
  - Determined by ALVEOLAR O<sub>2</sub> (PA<sub>O2</sub> < 70 mm Hg)</li>
  - May also be determined by NO?



### Other regulators of blood flow

- Thromboxane A<sub>2</sub> constricts
- Prostacyclin (prostaglandin I<sub>2</sub>) dilates
- Leukotrienes constrict *airways*



| Substance                  | Concentration      | Lumen diameter     |
|----------------------------|--------------------|--------------------|
| Oxygen                     | Decreased <b>Ψ</b> | Decreased <b>Ψ</b> |
| NO                         | Increased 1        | Increased 1        |
| Thromboxane A <sub>2</sub> | Increased 1        | Decreased <b>Ψ</b> |
| Prostacyclin               | Increased 1        | Increased 1        |
| Leukotrienes               | Increased 1        | Decreased <b>Ψ</b> |



### Distribution of blood flow

Distribution throughout the lung is uneven due to gravity



#### • Zone 1:

- Alveolar pressure (PA) > arterial pressure (Pa) > PV
- Low flow rate

#### • Zone 2:

- Pa > PA > PV
- Blood flow is driven by the difference between Pa and PA, not Pa and venous pressure (PV)

#### • Zone 3:

- Pa > PV > PA
- Blood flow is driven by Pa-PV gradient
- Highest flow rate, most open capillaries



### Shunts

A portion of blood flow that is diverted or rerouted





### Types of shunts:

#### **Physiologic**

- 2% of blood normally bypasses the alveoli
- Bronchial blood flow
- Coronary blood flow draining directly to left ventricle

#### **Right-to-Left**

- Shunting from right heart to left heart
- VSD
- Uncorrectable hypoxemia always occurs
- Pa<sub>CO2</sub> changes minimally

#### Left-to-Right

- Shunting from left heart to right heart
- PDA, trauma
- Do not cause hypoxemia
- PO<sub>2</sub> in right heart is increased



### Ventilation/ Perfusion Ratios (V/Q)



Average V/Q = 0.8

$$\uparrow V / \uparrow \uparrow Q = \downarrow V/Q$$



### V/Q mismatch

Result in abnormal gas exchange

#### Dead space ( V/Q = ∞ )

- Ventilation of areas of lung that are not perfused
- Alveolar gas = humidified inspired air
  - $PA_{O2} = 150 \text{ mm Hg}, PA_{CO2} = 0$

Bl∞d flow obstruction

#### Shunt (V/Q = 0)

- Perfusion of areas of lung that are not ventilated
- Pulmonary capillary blood = mixed venous blood
  - PA<sub>O2</sub> = 40 mm Hg, PA<sub>CO2</sub> = 46 mm Hg

"Oirway" obstruction



### What we've covered so far...

- How pulmonary blood flow compares to systemic blood flow
- Regulation of pulmonary blood flow
- Distribution of pulmonary blood flow
- Shunting
- How ventilation and perfusion are related (V/Q)
- V/Q mismatch

Up next: regulation of breathing



### Control of Breathing

Both frequency and depth of breathing are tightly regulated

Four components to control system:

- 1. Chemoreceptors
- 2. Mechanoreceptors in lungs and joints
- 3. Control centers in the brainstem (medulla + pons)
- 4. Respiratory muscles
  - Directed by the brain stem centers



### Chemoreceptors

Send sensory information to the brain stem concerning  $Pa_{O2}$ ,  $Pa_{CO2}$ , and arterial pH

#### **Central**

- Located in the brain stem, communicate directly with the inspiratory center
- Respond directly to changes in pH of CSF, indirectly to changes in arterial PCO<sub>2</sub>
- Changes breathing rate (up OR down)

#### **Peripheral**

- Located in carotid bodies and aortic bodies
- Responds to arterial O<sub>2</sub>, CO<sub>2</sub>, and H<sup>+</sup>
- Increases breathing rate in response to:
  - 1. Decreases in arterial  $PO_2$  (<60 mm Hg)
  - 2. Increases in arterial PCO<sub>2</sub>
  - 3. Decreases in arterial pH (carotid bodies)







### Brain stem control of breathing

- The frequency of normal, involuntary breathing is controlled by:
  - 1. Medullary respiratory center
  - 2. Apneustic center
  - 3. Pneumotaxic center



### Medullary Respiratory Center

- Located in the MEDULLA, reticular formation
- Anatomically distinguished into:
  - Inspiratory center (dorsal respiratory group)
  - Expiratory center (ventral respiratory group)
- DRG controls the frequency of inspiration
  - Receives sensory input from peripheral chemoreceptors via CN IX and CN X, and from mechanoreceptors in the lungs via the vagus nerve
  - Sends motor output to diaphragm via phrenic nerve
- VRG is usually inactive, but becomes activated during exercise



### Brain stem control of breathing

- The frequency of normal, involuntary breathing is controlled by:
  - 1. Medullary respiratory center
  - 2. Pneumotaxic center
  - 3. Apneustic center



### Pneumotaxic Center

- Located in upper pons
- Turns off inspiration (i.e limits the amount of action potentials in the phrenic nerve)
  - Limits the size of the tidal volume
  - Regulates respiratory rate
- Normal breathing rate persists even without this center (Costanzo);
  lesion to it causes apneustic breathing (Kaplan)



### Brain stem control of breathing

- The frequency of normal, involuntary breathing is controlled by:
  - 1. Medullary respiratory center
  - 2. Pneumotaxic center
  - 3. Apneustic center



### **Apneustic Center**

Apneusis – an abnormal breathing pattern characterized by prolonged inspiratory gasps, followed by brief expiratory movement

- Located in the lower pons
  - Controlled by pneumotaxic center
- Excites the inspiratory center (medulla), prolonging the action potentials of the phrenic nerve



### Honorable mention: cerebral cortex

- Can temporarily override the brain stem centers
- Self-limited

- Hyperventilation → decrease in Pa<sub>CO2</sub>
  - Causes increase in arterial pH
- Hypoventilation  $\rightarrow$  decrease in Pa<sub>O2</sub>, increase in Pa<sub>CO2</sub>













### Integrative Functions: exercise

#### What happens during exercise?

- O<sub>2</sub> demand is increased
- Ventilation rate is increased





## Do the average arterial PO<sub>2</sub> and PCO<sub>2</sub> change?

• NO!

#### Does venous PCO<sub>2</sub> change?

• YES!





So why doesn't arterial PO<sub>2</sub> change?

- Increased ventilation
- Increased cardiac output
- Increased perfusion of capillary beds

### One more thing:

• Exercise shifts the oxygen dissociation curve to the right to increase  $O_2$  unloading





### Integrative Functions: high altitude

High altitudes have a decreased PO<sub>2</sub>

#### So what we do about it?

- 1. Hyperventilate
- 2. Increase [RBC]
- 3. Increase 2,3-DPG
- 4. Vasoconstrict





### High altitude: hyperventilation

- Most significant response
- If  $PO_2 < 60 \text{ mm Hg} \rightarrow \text{peripheral chemoreceptors} \land \text{breathing rate}$

- Good: PO<sub>2</sub> increases
- Bad: PCO<sub>2</sub> decreases
  - Causes an increase in pH and RESPIRATORY ALKALOSIS → inhibits central and peripheral chemoreceptors, decreases the breathing rate
  - Hyperventilation resumes after a couple of days



### High altitude: polycythemia

- Hypoxia in kidney leads to increased EPO synthesis
- Increase in [Hb] leads to increase in O<sub>2</sub> carrying capacity
  - Increases total O<sub>2</sub> content of blood even though arterial PO<sub>2</sub> is decreased
- Good: increase O2 reaching tissues
- Bad: increases blood viscosity



### High altitude: 1 2,3-DPG

- Causes a right shift of oxygen-hemoglobin dissociation curve
- Good: makes it easier to unload O<sub>2</sub> in tissues
- Bad: makes it harder to load Hb with O<sub>2</sub> in lungs



### High altitude: hypoxic vasoconstriction

Low PA<sub>O2</sub> → vasoconstriction

 Bad: increases pulmonary arterial pressure, which may cause hypertrophy of the right ventricle

