I thought YOU were getting donated! Me? No way, l like it here.

Adrian Poniatowski

StudyAid Renal Physiology Seminar

April 9, 2018

Memorize – But Understand First

Table 6-4 Commonly Used Equations in Renal Physiology

Name	Equation	Units	Comments
Clearance	$C_{x} = \frac{[U]_{x}\dot{V}}{[P]_{x}}$	mL/min	x is any substance
Clearance ratio	Clearance ratio = $\frac{C_x}{C_{inulin}}$	None	Also means fractional excretion of x
Renal plasma flow	$RPF = \frac{[U]_{PAH} \dot{V}}{[RA]_{PAH} - [RV]_{PAH}}$	mL/min	
Effective renal plasma flow	Effective RPF = $\frac{[U]_{PAH}\dot{V}}{[P]_{PAH}}$	mL/min	Underestimates RPF by 10%; equals C_{PAH}
Renal blood flow	$RBF = \frac{RPF}{1 - Hct}$	mL/min	1 minus Hct is fraction of blood volume that is plasma
Glomerular filtration rate	$GFR = \frac{[U]_{inulin} \dot{V}}{[P]_{inulin}}$	mL/min	Equals C _{inulin}
Filtration fraction	$FF = \frac{GFR}{RPF}$	None	
Filtered load	Filtered load = $GFR \times [P]_x$	mg/min	
Excretion rate	Excretion = $\dot{V} \times [U]_x$	mg/min	
Reabsorption or secretion rate	Reabsorption or secretion = Filtered load – Excretion	mg/min	If <i>positive</i> , net reabsorption If <i>negative</i> , net secretion
Free-water clearance	$C_{H_2O} = \dot{V} - C_{osm}$	mL/min	If <i>positive</i> , free water is excreted If <i>negative</i> , free water is reabsorbed

Renal Clearance

$$\mathbf{C} = \frac{[\mathbf{U}]_{\mathbf{x}} \times \dot{\mathbf{V}}}{[\mathbf{P}]_{\mathbf{x}}}$$

where

C = Clearance (mL/min) $[U]_x = Urine concentration of substance X (mg/mL)$ $\dot{V} = Urine flow rate per minute (mL/min)$ $[P]_x = Plasma concentration of substance X (mg/mL)$

"The <u>rate</u> at which substances are removed from plasma"

High RC = substance intensely filtered & removed by kidneys

- Important concept in physio, pharm, and path
- Can be from 0 to 600 ml/min (physio Renal Plasma Flow)
- Depends on <u>free filtration</u> of substance across glomerular capillaries and <u>reabsorption</u> by nephron

Clearances Used as Standard Parameters

$$C_{PAH} = \text{Effective RPF} = \frac{[U]_{PAH}\dot{V}}{[P]_{PAH}}$$

$$C_{\text{inulin}} = GFR = \frac{[U]_{\text{inulin}}\dot{V}}{[P]_{\text{inulin}}}$$

- Glucose: RC ~ 0 ml/min since totally filtered & totally reabsorbed
- Albumin: RC ~ 0 ml/min since large molecule, no filtration
- Presence of these substances in urine is always <u>pathological</u>

- Inulin: RC = GFR, therefore marker
- Creatinine ~ Inulin ~ GFR
- PAH (*para*-aminohippuric acid):

<u>RC = RPF</u>, gives also RBF

A Closer Look: Inulin & Clearance Ratio

Clearance ratio =
$$\frac{C_x}{C_{\text{inulin}}} = \frac{C_x}{GFR}$$

- Clearance ratio: Ratio (%) of substance clearance compared to GFR/inulin standard
- Most substances have ratio <u>less</u> <u>than 1.0</u>, because most are not filtered or filtered & reabsorbed
- Clinical significance: Na clearance ratio (FENa norm: 1-2%)

Bringing it Together: Physological Example

SodiumInulinCreatinine P_{Na} =150 mEq/L P_{In} =1 mg/mL P_{Cr} = U_{Na} = U_{In} =150 mg/mL U_{Cr} =1.25 mg/mL C_{Na} =5 mL/min C_{In} = C_{Cr} =125 mL/min

$$\mathbf{C} = \frac{[\mathbf{U}]_{\mathbf{x}} \times \dot{\mathbf{V}}}{[\mathbf{P}]_{\mathbf{x}}}$$

Assume V = 1.44 L/day <u>Conversion & Units!!</u> Bonus: What is GFR here?

study

Kidneys receive 25% of total body blood flow, 1.25 L/min (1800 L/d)!

Renal Blood Flow (RBF)

Regulation

- Highly autoregulated
- Affected by multiple vasoconstrictors/dilators

Dynamic Changes

- Caused by changes in afferent & efferent arteriole contraction
- Balance between RPF and GFR: Ratio expressed as FF

RBF Autoregulation

- Main Idea: RBF will remain <u>constant</u> despite wide variation in systemic blood pressure (80-180 mmHg)
- Two proposed mechanisms
- <u>Tubuloglomerular feedback</u>: Macula densa senses chngs in filtrate and released afferent arteriole vasoconstrictor
- <u>Myogenic mech</u>: Stretch-activated Ca channels in aff art sm musc cause contraction

Figure 6–6 Autoregulation of renal blood flow and glomerular filtration rate. P_a, Renal artery pressure.

TUBULOGLOMERULAR FEEDBACK

studyaid

Vasoactive Substance Effects

Vasoconstrictors	Vasodilators		
Sympathetic nerves	PGE ₂		
(catecholamines)	PGI ₂		
Angiotensin II	Nitric oxide		
Endothelin	Bradykinin		
	Dopamine		
	Atrial natriuretic peptide		

PG, Prostaglandin.

Changes in glomerular dynamics			
Effect	GFR	RPF	FF (GFR/RPF)
Afferent arteriole constriction Efferent arteriole constriction	↓ ↑	ţ	

Fick Principle: What goes in (artery) must equal what comes out (vein + urine)

 $IN \qquad OUT \\ [RA]_{PAH} \times RPF = [RV]_{PAH} \times RPF + [U]_{PAH} \times \dot{V}$

Calculating RPF

True Renal Plasma Flow

- Impractical to measure
- Assumptions: RVpah ~ 0, RApah = [P]pah

Effective Renal Plasma Flow

 Underestimates true flow by ~10% (extraction ratio is 0.92), but good enough

Effective RPF =
$$\frac{[U]_{PAH} \times \dot{V}}{[P]_{PAH}} = C_{PAH}$$

Filtration Fraction & RBF

Filtration fraction = $\frac{\text{GFR}}{\text{RPF}}$

Filtration Fraction

- Filtration fraction relates GFR with RPF
- FF = % of plasma filtered through capillaries into proximal tubule
- Whatever affects GFR or RPF will affect FF, unless both are affected
- Normally 20%

 $RBF = \frac{RPF}{1 - Hct}$

RBF = Renal blood flow (mL/min) RPF = Renal plasma flow (mL/min) Hct = Hematocrit

Renal <u>Blood</u> Flow

- Actual volume of blood going thru kidney (20-25% of body total of 5 L)
- Blood = Plasma + Hematocrit
- Equation corrects for hematocrit
- Normally 1 1.25 L/min

Bringing it Together: Physological Example

Filtration fraction = $\frac{\text{GFR}}{\text{RPF}}$

$$RBF = \frac{RPF}{1 - Hct}$$

Dynamic Effects

	GFR	RPF	FF (GFR/RPF)
Constriction of afferent arteriole			
Constriction of efferent arteriole			
Dilation of afferent arteriole			
Dilation of efferent arteriole			
Increase in serum protein			
Ureter stone obstruction			
ACE inhibitors (Vasodilate efferent)			
NSAIDs (Vasoconstrict afferent)			
			studya

Dynamic Effects

	GFR	RPF	FF (GFR/RPF)
Constriction of afferent arteriole	\checkmark	\checkmark	NO CHANGE
Constriction of efferent arteriole	\uparrow	\checkmark	\uparrow
Dilation of afferent arteriole	\uparrow	\uparrow	NO CHANGE
Dilation of efferent arteriole	\checkmark	\uparrow	\checkmark
Increase in serum protein	\checkmark	NO CHG	\checkmark
Ureter stone obstruction	\checkmark	NO CHG	\checkmark
ACE inhibitors (Vasodilate efferent)	\checkmark	\uparrow	\checkmark
NSAIDs (Vasoconstrict afferent)	\checkmark	\checkmark	NO CHANGE
			study