Gas exchange

By Gustav Emil Dietrichson

Table of contents

- Definitions
- Conducting- and respiratory airway
- Fick's law
- Partial pressure
- Gas exchange
 - External respiration
 - Internal respiration
- Oxygen-Hemoglobin dissociation curve
 - Right- and left shifts

Definitions

- Partial pressure
 - How to express the amount of O2 and CO2 present in our airways and blood?

- External respiration Environment → Alveoli
- Internal respiration Blood → Tissues

Conducting airway vs respiratory airway

Moves air in and out of the lungs

Moves CO2 and O2 in and out of the blood

- Rate of diffusion of a gas across a permeable membrane depends on:
 - Gas:
 - Solubility Molecular weight Partial pressure gradient
 - Lung:
 - Surface area Membrane thickness

Ficks law

$$D = \frac{SA \times \Delta P \times S}{T \times VmW}$$

$$D = \Delta P \times S$$

D= Diffusion rate

ΔP= Pressure gradient

S= Solubility of gas

T= Thickness of membrane

mw=molecular weight

MATH!!!

 $D = \Delta P \times S$

$$D = (100-40) \times 1$$

$$D = 60 \times 1 = 60$$

<u>CO2</u>

$$D = \Delta P \times S$$

$$D = 5 \times 20 = 100$$

Despite O2 having a larger gradient, CO2 will diffuse at a greater rate. CO2 will therefore have "priority".

Partial pressures to remember

Gas exchange

- T-state hemoglobin
 - O2 affinity
 - **1**CO2 affinity
 - ↑ H+ affinity2,3-BPG affinity

- R-state hemoglobin
 - **↑**O2 affinity
 - CO2 affinity
 - ♣H+ affinity2,3-BPG affinity

- Total CO2
 - 20% bound as carbaminohemoglobin
 - 70% as HCO3- buffer
 - 2-10% dissolved as CO2

Oxygen-Hemoglobin dissociation curve

Left shift

Tissue gets too little O2

The y-axis increases

More O2 remains in hgb

The curve is sigmoidal due to the concept of positive cooperativity

THE OXYGEN-HEMOGLOBIN DISSOCIATION CURVE

Right shift

Too much O2 is given to tissues

The y-axis decreases

Less O2 remains in hgb

Shifts of the oxygen-hemoglobin dissociation curve

Left shifts	
Factor	Comment
↓ PaCO2, ↓ H+ (↑ pH)	- ↓Tissue metabolism- ↓Oxygen demand
↓ Temperature	- ↓Tissue metabolism- ↓Heat production- ↓Oxygen demand
↓2,3-diphosphoglycerate (2,3-DPG)	
Hemoglobin F	- 个Oxygen affinity
СО	- 个Oxygen affinity

Right shifts	
Comment	
- 个Metabolic activity- 个Oxygen demand- Bohr effect!	
- 个Metabolic activity- 个Heat production- 个Oxygen demand	
Product of RBC glycolysisProduced in periods of tissue hypoxia	

Right shift—ACE BATs right handed:
Acid
CO ₂
Exercise
2,3- B PG
Altitude
Temperature

