Gas exchange

How to express the <u>amount</u> of O₂ and CO₂ present in our airways and blood?

Partial pressure

Alveolar oxygen

- Dependent on how much oxygen consumed
- \uparrow Oxygen consumption $\rightarrow \downarrow$ Alveolar oxygen
- Measurement of O_2 consumption \rightarrow CO_2
- $\uparrow CO_2 \rightarrow \uparrow O_2$ consumption $\rightarrow \downarrow$ Alveolar oxygen

PAO2= Pi – Oxygen consumption

 $PA_{O2}=Pi-(P_{CO2}/R)$ PAO2= Pi-PCO2

- Diffusion of gases follow a pressure gradient
 - High → Low
- Only gases dissolved in blood (PaO₂) can participate in the pressure gradient
- Gases bound to hemoglobin does not participate in the pressure gradient

The partial pressure of CO₂ in <u>venous blood</u> entering the lung is <u>47 mmHg</u>. The partial pressure of CO₂ in the <u>alveoli</u> is <u>40mmHg</u>. In which direction will CO₂ move?

- A. Into the lung capillaries
- B. It will be transported by active transport into the alveoli
- C. Into the alveoli by passive diffusion
- D. It will not diffuse at all since the partial pressure of CO₂ in the venous blood and alveoli is at equilibrium

Fick's law

- Rate of diffusion of a gas across a permeable membrane depends on:
 - Gas
 - Solubility
 - Molecular weight
 - Partial pressure gradient
 - Lung
 - Surface area
 - Membrane thickness

D= Diffusion rate

 ΔP = Pressure gradient

S= Solubility of gas

T= Thickness of membrane

mw=molecular weight

Which gas will diffuse first? O₂ or CO₂?

$$O_2$$
D= Δ **P x S**

$$D = (100-40) \times 1$$

$$D = 60$$

$$CO_2$$
 $D = \Delta P \times S$
 $D = (47-40) \times 20$
 $D = 140$

«Even though O2 has a larger pressure gradient, CO2 is 20 times more soluble than O2 \rightarrow CO2 will therefore diffuse first!»

O₂-binding capacity

PO ₂ (mmHg)	Saturation (%)	
100	>97	
80	96	
60	90	
50	85	
40	75	
25	50	P ₅₀
20	35	

O2-Hemoglobin Dissociation Curve

Right shifts		
Factor	Comment	
↑PaCO ₂ and ↑H+ (↓pH)	- 个Metabolic activity- 个Oxygen demand- Bohr effect!	
个Temperature	- 个Metabolic activity- 个Heat production- 个Oxygen demand	
↑ 2,3-diphosphoglycerate (2,3-DPG)	- Product of RBC glycolysis- Produced in periods of tissue hypoxia	

O2-Hemoglobin Dissociation Curve

Left shifts		
Factor	Comment	
↓ РаСО2, ↓ Н+ (↑ рН)	- ↓Tissue metabolism- ↓Oxygen demand	
↓ Temperature	 →Tissue metabolism →Heat production →Oxygen demand 	
↓2,3-diphosphoglycerate (2,3-DPG)		
Hemoglobin F	- 个Oxygen affinity	
СО	- 个Oxygen affinity	

Select the correct statement concerning P_{50} when the O_2 -hemoglobin dissociation curve is shifted to the right:

- A. It is the same as under normal circumstances
- B. It is increased
- C. It is decreased
- D. P₅₀ is a gas transported in blood
- E. Only D is correct

Most of the CO2 transported in the blood is:

- A. dissolved in plasma
- B. in carbamino compounds formed from plasma proteins
- C. in carbamino compounds formed from hemoglobin
- D. bound to Cl-
- E. in HCO3-

