Gas exchange How to express the <u>amount</u> of O₂ and CO₂ present in our airways and blood? Partial pressure ### Alveolar oxygen - Dependent on how much oxygen consumed - \uparrow Oxygen consumption $\rightarrow \downarrow$ Alveolar oxygen - Measurement of O_2 consumption \rightarrow CO_2 - $\uparrow CO_2 \rightarrow \uparrow O_2$ consumption $\rightarrow \downarrow$ Alveolar oxygen PAO2= Pi – Oxygen consumption $PA_{O2}=Pi-(P_{CO2}/R)$ PAO2= Pi-PCO2 - Diffusion of gases follow a pressure gradient - High → Low - Only gases dissolved in blood (PaO₂) can participate in the pressure gradient - Gases bound to hemoglobin does not participate in the pressure gradient The partial pressure of CO₂ in <u>venous blood</u> entering the lung is <u>47 mmHg</u>. The partial pressure of CO₂ in the <u>alveoli</u> is <u>40mmHg</u>. In which direction will CO₂ move? - A. Into the lung capillaries - B. It will be transported by active transport into the alveoli - C. Into the alveoli by passive diffusion - D. It will not diffuse at all since the partial pressure of CO₂ in the venous blood and alveoli is at equilibrium ### Fick's law - Rate of diffusion of a gas across a permeable membrane depends on: - Gas - Solubility - Molecular weight - Partial pressure gradient - Lung - Surface area - Membrane thickness D= Diffusion rate ΔP = Pressure gradient S= Solubility of gas T= Thickness of membrane mw=molecular weight ## Which gas will diffuse first? O₂ or CO₂? $$O_2$$ **D=** Δ **P x S** $$D = (100-40) \times 1$$ $$D = 60$$ $$CO_2$$ $D = \Delta P \times S$ $D = (47-40) \times 20$ $D = 140$ «Even though O2 has a larger pressure gradient, CO2 is 20 times more soluble than O2 \rightarrow CO2 will therefore diffuse first!» # O₂-binding capacity | PO ₂ (mmHg) | Saturation (%) | | |------------------------|----------------|-----------------| | 100 | >97 | | | 80 | 96 | | | 60 | 90 | | | 50 | 85 | | | 40 | 75 | | | 25 | 50 | P ₅₀ | | 20 | 35 | | #### **O2-Hemoglobin Dissociation Curve** | Right shifts | | | |------------------------------------|---|--| | Factor | Comment | | | ↑PaCO ₂ and ↑H+ (↓pH) | - 个Metabolic activity- 个Oxygen demand- Bohr effect! | | | 个Temperature | - 个Metabolic activity- 个Heat production- 个Oxygen demand | | | ↑ 2,3-diphosphoglycerate (2,3-DPG) | - Product of RBC glycolysis- Produced in periods of tissue hypoxia | | #### **O2-Hemoglobin Dissociation Curve** | Left shifts | | | |--|--|--| | Factor | Comment | | | ↓ РаСО2, ↓ Н+ (↑ рН) | - ↓Tissue metabolism- ↓Oxygen demand | | | ↓ Temperature | →Tissue metabolism →Heat production →Oxygen demand | | | ↓2,3-diphosphoglycerate (2,3-DPG) | | | | Hemoglobin F | - 个Oxygen affinity | | | СО | - 个Oxygen affinity | | Select the correct statement concerning P_{50} when the O_2 -hemoglobin dissociation curve is shifted to the right: - A. It is the same as under normal circumstances - B. It is increased - C. It is decreased - D. P₅₀ is a gas transported in blood - E. Only D is correct ### Most of the CO2 transported in the blood is: - A. dissolved in plasma - B. in carbamino compounds formed from plasma proteins - C. in carbamino compounds formed from hemoglobin - D. bound to Cl- - E. in HCO3-