Enzyme kinetics -Inhibition and Regulation

Tuva Skoglund

Inhibitors - Kinetics

Competitive

• Bind SAME SITE

• Vmax

• Km

Non-competitive

Bind DIFFERENT SITE

• Vmax

• Km

Inhibitors - Kinetics

Competitive

- Effect on plot
 - Intersect on Y-axis unchanged
 - X-axis point moves closer to 0
- E.g. Statin drugs
 - HMG-CoA reductase
- E.g. Beta-blockers
 - Receptor-inhibitors

Non-competitive

- Effect on plot
 - Intersect on X-axis unchanged
 - Intersect on Y-axis increased

E.g. Heavy metal ions (Lead)

Suicide inhibitors

- Irreversible inhibition of enzymes
- Bind active site by covalent bonds
- Examples:
 - Aspirin binds COX-1 and COX-2
 - Inhibits PGs and TXA synthesis → Reduced inflammation
 - Adverse effect: irritation of gastric mucosa

Regulation

- Allosteric regulation
 - Effectors (positive/negative) bind noncovalently
 - Homotropic: Substrate = effector
 - E.g. O₂ for Hb
 - Heterotropic: Substrate ≠ effector
 - Feedback inhibition
 - E.g. 2,3-BPG for Hb
- Covalent modification
 - Most frequently: Phosphorylation/dephosphorylation

Allosteric control of enzyme activity requires:

- A conformational change in an enzyme that changes its conformational activity
- The conversion of one form of the enzyme to another by the action of proteolytic enzymes
- A metal ion
- A cofactor derived from a vitamin
- An affector that is the product of an enzymatic reaction and which competes for the active site of the enzyme

