Renal Physiology

Glomerular filtration rate

- Ultrafiltrate
- Endothelium
 - Pores 70-100nm in diameter
- The basement membrane
 - Lamina rara interna
 - Lamina densa
 - Lamina rara externa
- Epithelium
 - Podcytes with foot processes
 - Holes 25-60nm in diameter

Properties of the barier

- Small solutes are filtered more than big solutes
- Negatively charged endothelium
- Repels negatively charged solutes, atracts positevely charged solutes

Starling equation

GFR

R_A

Afferent

 R_A

- GFR = Glomerular filtration rate (mL/min)
- Kf = Hydraulic conductance (mL/min mm Hg)
- PGC = Hydrostatic pressure in glomerular capillary (mm Hg)
- PBS = Hydrostatic pressure in Bowman's space (mm Hg)
- πGC = Oncotic pressure in glomerular capillary (mm Hg)

Starling equation

- Filtration decreases at the end of the glomerular capilaries
- Oncotic pressure
- filtration equilibrium

Changes in GFR

Effect	RPF	GFR
Constriction of afferent arteriole	\downarrow	\downarrow
Constriction of efferent arteriole	\downarrow	↑
Increased plasma protein concentration	N.C.	\downarrow
Decreased plasma protein concentration	N.C.	↑
Constriction of the ureter	N.C.	\downarrow

Measuring GFR

- Measured with a substance that:
 - 1) freely filtered
 - 2) neither secreted nor reabsoarbed
 - 3) dosent alter the GFR
- Inulin
- Creatinine
- Blood urea nitrogen (BUN)

Filtration fraction

- How much of the blood is filtered
- Usually at around 20%

Reabsorption and secretion

- Filtration
- Reabsorption
- Secretion
- Excretion

Glucose reabsorption

- Na²-Glucose transporter (SGLT)
- secondary active transport
- facilitated diffusion
- GLUT 1 and GLUT 2

Glucose titration curve

- More glucose in blood = More glucose is fltered
- Threshold at 200mg/dL
- Splay
- Fully saturated at 350mg/dL
- Glucosuria

Urea reabsorption/secretion

• Secreted passively by facilitaded and simple diffusion

UREA HANDLING IN THE NEPHRON

rtudyaid

Para-Aminohippuric Acid Secretion

- Secretes also penicillin
- Inhibited by probenecid

Weak Acids and Bases—Non-Ionic Diffusion

- Weak acid exists in two forms
 - HA (Uncharged, low ph)
 - A⁻ (Charged, high ph)
- Weak bases exists in two forms
 - B (Unharged, high ph)
 - BH⁺ (Charged, low ph)
- Uncharged acids and bases are secreted and reabsorbed freely

Proximal tubule

- Resorption of water (70-80%)
- Resorption of ions (Na⁺, Cl⁻), glucose, amino acids
 - Membrane transporters
- Resorption of some metabolites and drugs
- Secretion of ammonia, urea, exogenous compounds

Thin limb

Resorption of water

The resorption of water makes urine more concentrated

Distal tubule

- Resorption of Na+, Cl-
 - Controlled by aldosterone
- Secretion of K+, H+
 - Acidifies urine
- Resorption of water

Collecting tubule

- Several nephrons empty into one collecting tubule
- Resorption of water
 - Membrane channels (aquaporins), mediated by ADH

All statements are true except

- A) Capillaries in the bowman capsule have pores 70-100mm
- B) The basement membrane in the bowman capsule contains three layers
- C) The endothelium of the capillaries is positivelly charged
- D) The podocytes have foot procceses

Filtration equilibrium is reached by what mechanism?

- A) Increased oncotic pressure in the capillaries in the nephron
- B) decreased hydrostatic pressure in the cappilaries in the nephron
- C) increased oncotic pressure in the bowman space
- D) increased hydrostatic pressure in the bowman space

