Renal Clearance & Blood Flow Mechanics

New concepts in renal physiology

Abbreviations

- C
- [U]
- [P]
- V
- GFR
- RPF
- RBF
- [TF]

Equations

•
$$C_X = [U]x * V/_{[P]X}$$

• RBF =
$$^{RPF}/_{1 - Hct}$$

•
$$FF = \frac{GFR}{RPF}$$

Understanding these is more important than memorizing them!

Renal clearance

$$C_X = [U]x * V/_{[P]x} = urinary excretion/_{plasma concentration}$$

- "The volume of plasma completely cleared of a substance by the kidneys per unit time" – Costanzo
 - Appropriate units are volume per unit time, e.g mL/min, L/day

INCREASED clearance → DECREASED plasma concentration

Clearance of specific substances

- Clearance takes into account
 - 1. Filtration
 - 2. Reabsorption
 - 3. Secretion
- Albumin
 - Not filtered at all → clearance of 0
- Glucose
 - Filtered but then completely reabsorbed → clearance of 0
- Inulin
 - Filtered but not absorbed/ secreted → clearance is equal to GFR
- Para-aminohippuric acid (PAH)
 - Filtered and also secreted → highest clearance possible

Clearance ratios

- Clearance ratio = Cx / Cinulin
- Inulin is a **glomerular marker**
 - Filtered but not absorbed/ secreted → clearance is equal to GFR
- If $C_x / C_{inulin} = 1$
 - Substance is also a glomerular marker
- If $C_x / C_{inulin} < 1$
 - Substance is not filtered OR
 - Substance is filtered but then reabsorbed
- If $C_x / C_{inulin} > 1$
 - Substance is secreted

In other words:

- If $C_x = GFR$
 - There is no net tubular reabsorption or secretion of X
- If $C_x < GFR$
 - There is net tubular reabsorption of X
- If $C_x > GFR$
 - There is net tubular secretion of X

Renal blood flow (RBF)

- 25% of cardiac output → 1.25 L/min, 1800 L/day
- Highly regulated:
 - Influenced by chemical mediators
 - Autoregulation

Vasoactive mediators

- 1. Sympathetic stimulation/ catecholamines
- 2. Angiotensin II
- 3. Atrial natriuretic peptide
- 4. Prostaglandins
- 5. Dopamine

SANS/ Catecholamines

- Vasoconstriction via α1 receptors
 - Afferent >> efferent
- Decreases RBF → decreased GFR
- Important in shock (together with ATII)
 - Redirects blood flow to vital organs

Angiotensin II

- Vasoconstricts → decreases RBF
- Low levels:
 - Constrict efferent arterioles
- High levels:
 - Constrict afferent and efferent arterioles
 - Efferent >> afferent
- Important in shock (together w/ SANS)

Atrial natriuretic peptide

- Dilates afferent, constricts efferent
- Increases RBF

Prostaglandins

- Produced locally (PGE₂, PGI₂)
- Stimulated alongside SANS and ATII
 - Vasodilates
 - Increases RBF
 - Renoprotective in shock

Dopamine

- Vasodilates renal arterioles
- Important therapy during shock
 - Renoprotective while redirecting peripheral blood to vital organs

Summary: vasoactive mediators

Substance	Afferent constriction	Efferent constriction	RBF
SANS/ catecholamines	۸۸	۸	V
Angiotensin II	۸	^^	V
ANP	v	٨	^^
Prostaglandins	V	V	^
Dopamine	v	v	۸

Autoregulation

Maintains a constant RBF even though arterial pressure in the kidney can fluctuate from 80 to 200mmHg; controlled largely at the level of the afferent arteriole

Myogenic

- Increased arterial pressure stretches the arteriole ->
 - Opens stretch-induced Ca⁺⁺
 channels →
 - ^[Ca] causes reflexive vasoconstriction →
 - Increased resistance to blood flow

Tubuloglomerular Feedback

- Increased arterial pressure increases RBF/ GFR →
 - More ultrafiltrate reaches macula densa, stimulating the JGA →
 - Juxtaglomerular apparatus releases a paracrine hormone that constricts the afferent arteriole →
 - Increased resistance to blood flow

