Muscle Contraction

By Thomas Dlugosz

Table of Contents

- Proteins Involved
- Sarcomere
- Initiating Events of Skeletal Muscle Contraction
- Cross Bridge Cycle
- Cardiac Muscle Contraction
- Smooth Muscle Contraction
- Termination of Contraction

What are the 3 kinds of muscle we have?

Proteins Involved: The Filaments

All muscle cells have structures called thick filaments. They are made of hundreds of **myosin protein** molecules.

All muscle cells also have thin filaments. They are made of actin Mnemonic: Acthin \rightarrow Thin filaments

Proteins Involved: Regulatory Proteins

Cardiac and Skeletal Regulatory Proteins Tropomyosin: A fibrous molecule that blocks the myosin-binding site of actin

Troponin Complex: Made of Troponin C, Troponin I and Troponin T

Smooth Muscle Regulatory Protein Calmodulin: Combines with calcium to activate MLCK

Myosin Light Chain Kinase: A regulatory kinase that phosphorylates myosin light chains

The Sarcomere

Thick and thin filaments arrange themselves in **sarcomeres**, which are the functional units of skeletal and cardiac muscle.

- Z line- Z is the end of the alphabet and end of the sarcomere
- M-Line- Middle of the myosin filaments
- I-band: I is a thin letter, so the I band contains only thin filaments
- H-Zone: H is a thick letter, so the H-zone contains only thick filaments
- A-band: All of the thick filament, whether it is overlapping or not

Sliding Filament Model

When our muscles contract, thin filaments are pulled to the middle of the sarcomere by sliding over thick filaments.

Table of Contents

- Proteins Involved
- <u>Sarcomere</u>
- Initiating Events of Skeletal Muscle Contraction
- Cross Bridge Cycle
- Cardiac Muscle Contraction
- Smooth Muscle Contraction
- Termination of Contraction

Initiating Event in Skeletal Muscle Contraction

Terminology

Sarcolemma- Muscle Cell membrane **T-tubule**- Transverse Tubule. It is formed by a fold in the sarcolemma which APs propagate down

Sarcoplasmic Reticulum- Name for the Endoplasmic Reticulum of a muscle cell

Initiating Event in Skeletal Muscle Contraction

Figure 12.10 Gating of sarcoplasmic reticulum calcium channels.

- **DHPR-** Dihydropyridine Receptor. It is a voltage gated receptor that changes conformation when depolarized.
- **Ryanodine Receptor** Mechanically gated by DHP receptors. They conduct calcium into the cytosol.

Troponin-Tropomyosin Interaction

- Calcium binds Troponin C
- Troponin C causes Troponin I to change conformation
- Troponin I pulls tropomyosin off the myosin binding sites of **actin**

Crossbridge Cycle

- With tropomyosin removed, we can undergo The Crossbridge Cycle
- The crossbridge cycle is universal for all muscle contraction

Clinical Correlation Rigor Mortis- Spastic paralysis of the muscles occurs upon death because we no longer make ATP to cause myosin to detach from actin!

Table of Contents

- Proteins Involved
- Sarcomere
- Initiating Events of Skeletal Muscle Contraction
- Cross Bridge Cycle
- Cardiac Muscle Contraction
- Smooth Muscle Contraction
- Termination of Contraction

Cardiac Muscle Contraction

- Fundamentally, cardiac muscle contraction occurs by the same sliding filament theory like in skeletal muscle
- The heart has its own pacemaker cells in the sinoatrial node that can produce APs independent of its innervation (~100 bpm)

Intercalated disks in cardiac muscle have gap junctions that allow for coordinated rhythmic contraction throughout the entire tissue

Cardiac Muscle Contraction Initiating Event

Cardiac Muscle Contraction is reliant on Calcium Induced Calcium Release!

Calcium-Induced Calcium Release (CICR) in Cardiomyocytes

Smooth Muscle Contraction

- Also Calcium Induced Calcium Release, but not as central as Cardiac Muscle.
- Calmodulin and MLCK are the regulatory proteins
- Myosin Light chain is a regulatory part of the myosin protein that regulates ATPase activity
- There are no sarcomeres in smooth muscle
- Smooth muscle contains troponin but does not contain tropomyosin. The function of troponin is unknown.

Table of Contents

- Proteins Involved
- •-Sarcomere-
- Initiating Events of Skeletal Muscle Contraction
- Cross Bridge Cycle
- Cardiac Muscle Contraction
- Smooth Muscle Contraction
- Termination of Contraction

How Does Contraction Stop in Muscle?

- We have Sarcoendoplasmic Reticulum Calcium ATPase (SERCA) on the SR membrane
- It removes cytosolic Calcium and moves it back into the SR
- What would happen if we didn't have SERCA?

Join this Wooclap event

@ Copy participation link

