Thermodynamics

By Matthew Hryniewicki

Free Energy (G)

- \circ Change (Δ) in free energy is the energy available to do work
- Predicts the direction in which a reaction will spontaneously occur
- <u>Approaches 0</u> as reaction proceeds to <u>equilibrium</u>
- **Defined by:**
 - \circ Enthalpy ΔH : change in heat content of reactants and products; heat released/absorber
 - O + : Absorbs/requires heat= ENDOTHERMIC
 - O : Releases heat = EXOTHERMIC
 - $\odot~$ Entropy ΔS : change in randomness or disorder of the reactants and products
 - + : more disordered

Free Energy Change (ΔG)

- ΔG : change in free energy
- -ΔG: net LOSS of energy; reaction goes spontaneously as written
 - EXERGONIC
 - Reaction continues until equilibrium ($\Delta G=0$)
- +ΔG: net GAIN of energy; reaction does NOT go spontaneously from B → A
 ENDERGONIC
- $\circ \Delta G=0: EQUILIBRIUM$

$\Delta G = \Delta H - T \Delta S$

Choose a-d to fill up the table below:

(explain your choice – is ΔG negative or positive?):

- a. spontaneous at all temperatures,
- b. not spontaneous at all temperatures,
- c. spontaneous at high temperatures,
- d. spontaneous at low temperatures

	$\Delta H < 0$	$\Delta H > 0$
$\Delta S > 0$		
$\Delta S < 0$		

ΔG = ⊖ − T⊕	ΔG = ⊕ – T⊕		
-ΔG	-ΔG @ high temps		
$\Delta G = \bigoplus - T \bigoplus$ $\Delta G = \bigoplus + T \bigoplus$ $-\Delta G @ low temps$	$\Delta G = \bigoplus - T \ominus$ $\Delta G = \bigoplus + T \bigoplus$ $+ \Delta G$		

ΔG^0 : standard free energy change

 ΔG⁰: Energy change under standard conditions, proceeding to equilibrium; products and reactants are at concentration of 1M, P=1atm, T= 25°C

 $\Delta G = \Delta G^0 + RT \ln \frac{[B]}{[A]}$

- Can be used to **predict** the direction of a reaction **under standard conditions** because $\Delta G = \Delta G^{0} + 0$
- Cannot predict the direction of a reaction under physiological conditions
 - ΔG': <u>biological conditions</u> (pH=7)
 - ΔG⁰: the standard Gibbs free energy change under <u>physiological conditions</u>, (concentration=1M)(pH=7) (P=1 atm) (T=25°C) (Kelvin=273+°C)

Table 17.1

The Reactions of Glycolysis and Their Standard Free-Energy Changes

			∆ G°' *		∆ G**
Step	Reaction	Enzyme	kJ mol ⁻¹	kcal mol ⁻¹	kJ mol ⁻¹
1	$Glucose + ATP \rightarrow Glucose - 6-phosphate + ADP$	Hexokinase/ Glucokinase	-16.7	-4.0	-33.9
2	Glucose-6-phosphate \rightarrow Fructose-6-phosphate	Glucose phosphate isomerase	+1.67	+0.4	-2.92
3	Fructose-6-phosphate + ATP → Fructose-1, 6- <i>bis</i> phosphate + ADP	Phosphofructokinase	-14.2	-3.4	-18.8
4	Fructose-1,6- <i>bis</i> phosphate → Dihydroxyacetone phosphate + Glyceraldehyde-3-phosphate	Aldolase	+23.9	+5.7	-0.23
5	Dihydroxyacetone phosphate → Glyceraldehyde- 3-phosphate	Triose phosphate isomerase	+7.56	+1.8	+2.41
6	2(Glyceraldehyde-3-phosphate + NAD ⁺ + $P_i \rightarrow$ 1,3- <i>bis</i> phosphoglycerate + NADH + H ⁺)	Glyceraldehyde-3-P dehydrogenase	2(+6.20)	2(+1.5)	2(-1.29)
7	2(1,3- <i>bis</i> phosphoglycerate + ADP → 3-Phosphoglycerate + ATP)	Phosphoglycerate kinase	2(-18.8)	2(-4.5)	2(+0.1)
8	$2(3-Phosphoglycerate \rightarrow 2-Phosphoglycerate)$	Phosphoglyceromutase	2(+4.4)	2(+1.1)	2(+0.83)
9	2(2-Phosphoglycerate → Phosphoenolpyruvate + H2O)	Enolase	2(+1.8)	2(+0.4)	2(+1.1)
10	2 (Phosphoenolpyruvate + ADP \rightarrow Pyruvate + ATP)	Pyruvate kinase	2(-31.4)	2(-7.5)	2(-23.0)
Overall	$\rm Glucose + 2ADP + 2P_i + NAD^+ \rightarrow$	Lactate dehydrogenase	-73.3	-17.5	-98.0
	2 Pyruvate \rightarrow 2ATP + NADH + H ⁺		2(-25.1)	2(-6.0)	2(-14.8)
	$2(Pyruvate + NADH + H^+ \rightarrow Lactate + NAD^+)$ Glucose + $2ADP + 2P_i \rightarrow 2 Lactate + 2ATP$		-123.5	-29.5	-127.6

* $\Delta G^{\circ}'$ values are assumed to be the same at 25°C and 37°C and are calculated for standard-state conditions (1 M concentration of reactants and products pH 7.0).

**∆G values are calculated at 310 K (37°C) using steady-state concentrations of these metabolites found in erythrocytes.

Additive property

- Values are additive in any sequence of consecutive reactions
- As long as the sum is negative, the pathway can proceed even if individual reactions are positive

$$\mathbf{K}_{\mathrm{eq}} = \frac{\left[B\right]_{eq}}{\left[A\right]_{eq}}$$

 $\Delta G^0 = -RT \ln (K_{eq})$

If $K_{eq} = 1$, then $\Delta G^0 = 0$ If $K_{ea} > 1$, then $\Delta G^0 < 0$ If $K_{ea} < 1$, then $\Delta G^0 > 0$

a. Calculate the equilibrium constant (K) for the reaction at 25° C. What is the value of Δ G at equilibrium?

 ΔG at equilibrium is 0!!!

$$\Delta G^{0} = -RT \times ln(K)$$

-5710 = -8.31 × 298 × ln(K)
-5710 = -2476.38 × ln(K)
2.306 = ln(K)
e^{2.306} = K
10 = K

b. Check if the isomerization reaction $A \rightarrow B$ is spontaneous at 25°C for the B and A concentrations that equal to 0.1M and 1mM respectively.

y. $\Delta G = \Delta G^{\theta} + RT \times \ln \left(\frac{[B]}{[A]}\right)$ $\Delta G = -5710 + 8.31 \times 298 \times \ln \left(\frac{[0.1]}{[0.001]}\right)$ $\Delta G = -5710 + 2476.38 \times \ln(100)$ $\Delta G = -5710 + 11404.15$ $\Delta G = 5694.15$ $\Delta G \text{ is positive, therefore NOT SPONTANEOUS}$

Laws of Thermodynamics

1st Law: CONSERVATION OF ENERGY - in any physical or chemical change, the total energy of a system, including the surroundings, remains constant

2nd Law: UNIVERSE VENTROPY - in all natural, spontaneous processes, the total entropy of a system always increases

Second Law of Thermodynamics The entropy (S) of any natural and spontaneous process either increases or remains constant Example: Heat flow from a hot body to a cold body Hot Cold $\Delta S = 0$ For reversible process

 $\Lambda S > 0$

For irreversible process

State Functions

Properties of a system that depend only on its current state and are <u>independent of the path</u> by which the system reaches that state

- $\circ \Delta H$
- $\circ \Delta G$
- $\circ \Delta V$
- $\circ \Delta T$

Path functionso Work (w)

• Heat (q)

State functions are systems where only the start and end points matter rather than the path taken

studyai

THANK YOU!

Event code

