Molecular Biology Techniques

By Matthew Hryniewicki

What will we cover?

□ How we <u>obtain</u> fragments of DNA

and gene copies

- Restriction enzymes
- Reverse transcriptase
- □ How we <u>identify</u> DNA sequences
 - Probes
 - Gel electrophoresis
 - Southern Blots
 - DNA sequencing

□ How we <u>amplify</u> DNA sequences

- Cloning
- PCR

□ Studying gene expression

- Polymorphisms
- Gene microarray
- HIV Diagnostics
 - ELISA
 - Western blot
 - Quantitative RT-PCR

Restriction Endonucleases

Special group of bacterial enzymes that cleave dsDNA into smaller, defined fragments

Each enzyme has a restriction site (a specific nucleotide sequence)

Palindromic sequences: sequence is identical if each strand is read in 5' \rightarrow 3' direction

Product: Restriction fragments (precisely defined DNA segments)

Restriction Endonucleases

5'- GTT'AAC -3'

3'- CAATTG -5'

CUT BY Hpa1

5'- GTT AAC -3'

3'- CAA TTG -5'

BLUNT ENDS

5'- G

3' - CTTAA

Sticky or blunt ends

Cleavage produces a 3'-hydroxyl end and a 5'phosphate end

Ligase can join sticky and blunt ends of two DNA fragments together

Blunt end ligation: -no hydrogen bonding between complementary nucleotide overhangs - Does not require complementary ends

human growth hormone

Recombinant DNA (rDNA)

Technology using enzymes to cut and paste together DNA sequences of interest

Recombined DNA sequences are placed into vectors

Suitable host cell allows for copying and expression

Reverse Transcriptase

Template: mRNA Product: cDNA

When compared to cleaved DNA fragments by restriction enzymes:

- No introns
- No regulatory regions of gene

Progress

- ✓ How we <u>obtain</u> fragments of DNA and gene copies
 - ✓ Restriction enzymes
 - ✓ Reverse transcriptase
- □ How we <u>identify</u> DNA sequences
 - Probes
 - Gel electrophoresis
 - Southern Blots
 - DNA sequencing

□ How we <u>amplify</u> DNA sequences

- Cloning
- PCR

□ Studying gene expression

- Polymorphisms
- Gene microarray
- HIV Diagnostics
 - ELISA
 - Western blot
 - Quantitative RT-PCR

Cloning

Foreign DNA (what you want amplified) is attached to a vector (carrier DNA)

This is introduced into a host cell that makes multiple copies of DNA

When host cell divides, it replicates their own DNA as well as the vector DNA <u>which includes</u> the DNA you want amplified

Foreign and vector DNA cut with the same restriction enzyme

<u>Extra terms to know:</u> **Transformed** – host bacterial cells with recombinant DNA **Transfected** – host eukaryotic cells with recombinant DNA **Transduced** – when the vector is a virus

PCR = Polymerase Chain Reaction

IN VITRO method that can be used for rapid production of very large amounts of specific segments of DNA

Needed: Primers

- 1 oligonucleotide complementary to short sequence (and 1 to other strand)

4x dNTPs

DNA polymerase

Target DNA

Progress

- ✓ How we <u>obtain</u> fragments of DNA and gene copies
 - ✓ Restriction enzymes
 - ✓ Reverse transcriptase
- □ How we <u>identify</u> DNA sequences
 - Probes
 - Gel electrophoresis
 - Southern Blots
 - DNA sequencing

- ✓ How we <u>amplify</u> DNA sequences
 - ✓ Cloning
 - ✓ PCR
- □ Studying gene expression
 - Polymorphisms
 - Gene microarray
- HIV Diagnostics
 - ELISA
 - Western blot
 - Quantitative RT-PCR

Probes

A single stranded polynucleotide (DNA or RNA) used to identify a complementary sequence on a larger-stranded DNA or RNA molecule <u>Annealing</u> or <u>hybridization</u>: formation of these base pairs with a complementary strand

Can be: cDNA (produced via reverse transcriptase) DNA fragments (cleaved via restriction enzymes from a genome) Chemically synthesized oligonucleotides RNA (occasionally)

<u>Stringency</u>: how exact of a match the probe must have to the DNA it is hybridizing in order for significant hybridization to occur Temperature (higher = more stringent) Salt concentration (higher = less stringent)

Label: needed in order identify the target sequence Can be: radioactive: detected by autoradiography chemical: detected by fluorescence microscopy

Probes

1 Isolate DNA from body fluid sample.

2 Denature DNA sample and combine with DNA probes. Probes are complementary to the gene of interest and labeled with a molecular beacon. 3 DNA probes will bind to the gene of interest if it is present in the DNA sample.

Gel electrophoresis

Uses an electrical field to separate molecules based on size **REMEMBER:** DNA has a <u>NEGATIVE</u> phosphate group Shorter molecules travel faster than longer molecules Bands are then visualized (by dyes and other techniques)

Blotting

Used in the detection of specific sequences

Involves: 1. Separate molecules by electrophoresis

2.Transfer of molecule (from electrophoresis gel) to a solid support (nitrocellulose paper)

- 3. Alkaline solution (denatures DNA)+ heat (fixes to paper)
- 4. Hybridization with a probe
- 5. Identification

Western cowboy eating a steak (protein)

Sanger Sequencing

Purpose: Determining the sequence of nucleotides in a DNA strand Deoxynucleotides

Materials:

- DNA polymerase Primer
- Template strand

Dideoxynucleotides 🔶 Only 1 per reaction (either ddATP, ddTTP, ddCTP, ddGTP)

Sanger sequencing

A. Terminates with ddATP

B. If synthesis is terminated with:

Next-generation sequencing

Progress

- ✓ How we <u>obtain</u> fragments of DNA and gene copies
 - ✓ Restriction enzymes
 - ✓ Reverse transcriptase
- \checkmark How we <u>identify</u> DNA sequences
 - ✓ Probes
 - ✓ Gel electrophoresis
 - ✓ Southern Blots
 - ✓ DNA sequencing

- ✓ How we <u>amplify</u> DNA sequences
 - ✓ Cloning
 - ✓ PCR
- □ Studying gene expression
 - Polymorphisms
 - Gene microarray
- HIV Diagnostics
 - ELISA
 - Western blot
 - Quantitative RT-PCR

Restriction Fragment Length Polymorphisms

Polymorphisms - variations among individuals of a species in DNA sequences of the genome -point mutations -insertions/deletions

Sometimes a point mutation can occur at a recognition site for one of the restriction enzymes Restriction enzyme CANNOT cut → larger restriction fragment
Sometimes mutations can make restriction sites not normally present Restriction enzyme performs extra cut → smaller restriction fragment
These variations in the length of restriction fragments = RFLPs

Molecular fingerprint

Variable number of tandem repeats (VNTR)

Short tandem repeats (STR)

- Short sequences of DNA at scattered locations of genome, repeated in tandem
- Number of repeats differs from person to person and is unique to any given person

- Very similar to VNTR but smaller in size
- Used in forensic science with DNA amplification by PCR

Microarrays (DNA Chips)

Α

Inside the wells of the DNA chip there are oligonucleotides or probes corresponding to a DNA sequence we are interested in

Pattern of hybridization is determined via computer analysis

Useful for:

- determining mutations for a particular genetic disease
- -determining which alleles of drugmetabolizing enzymes are present -determine which genes are being expressed in cells

Progress

- ✓ How we <u>obtain</u> fragments of DNA and gene copies
 - ✓ Restriction enzymes
 - ✓ Reverse transcriptase
- \checkmark How we <u>identify</u> DNA sequences
 - ✓ Probes
 - ✓ Gel electrophoresis
 - ✓ Southern Blots
 - ✓ DNA sequencing

- ✓ How we <u>amplify</u> DNA sequences
 - ✓ Cloning
 - ✓ PCR
- ✓ Studying gene expression
 - ✓ Polymorphisms
 - ✓ Gene microarray
- □ HIV Diagnostics
 - ELISA
 - Western blot
 - Quantitative RT-PCR

HIV

Retrovirus

2 types: HIV-1 and HIV-2

Structure: icosahedral

2 major envelope proteins: gp120 (external) and gp41 (transmembrane) Genomic RNA

Reverse transcriptase enzyme

Matrix (inner membrane)

Capsid (p24 core protein)

HIV Replication Cycle

- 1. Binding of HIV to CD4 molecule via gp120
- 2. Conformational change of gp120
- 3. Binding of co-receptors CCR5 and/or CXCR4
- 4. Fusion of virus with host cell membrane via gp41
- Uncoating of the capsid shell → facilitates reverse transcriptase and forms pre-integration complex (viral RNA, enzymes, accessory proteins) surrounded by capsid and matrix
- 6. Preintegration complex searches for nucleus Reverse transcription of RNA to dsDNA
- 7. Viral DNA enters the nucleus through the nuclear pore
- 8. Integration of proviral DNA to host DNA via integrase
- 9. The provirus can be latent or active
- 10. If active, transcription occurs where HIV mRNA is translated to proteins that undergo modifications
- 11. Assembly of viral particle occurs at the plasma membrane; contains HIV proteins, enzymes, and genomic RNA
- 12. Budding of the progeny virion gives it an external envelope
- 13. During or soon after budding, **protease** cleaves a gag-pol precursor = mature virion
 - 1. Gag p24, p17
 - 2. Pol protease processing, reverse transcription, integration

Detection of HIV

Eclipse period - variable amount of time in which no existing diagnostic test is capable of detecting HIV

Window period - time from infection to first reactive result

HIV RNA - within 12 days (50%) with peaks at 20-30 days

p24 - by day 15 and rises through days 25-30; by day 50, antigen is cleared from bloodstream

IgM - day 20, peaking days 30-35

IgG - days 30-35

Point of Care (POC) Testing	Window Time
IgG (1 st and 2 nd gen)	~31 days
IgM/IgG (3 rd gen)	~23 days
Antigen/antibody (IgM+IgG+p24) (4 th gen)	~18 days

Serum/plasma >> oral transudate One key disadvantage: lower sensitivity, especially early after infection

Enzyme-linked immunosorbent assay (ELISA)

Detection of antibodies to HIV

Detection of HIV-specific proteins

Immovable HIV-specific proteins are used as 'bait' (=antigens) for HIV antibodies in the human blood sample

HIV antibodies bind to the antigens

Bound HIV antibodies are made visible by labelled antigens that bind to the HIV antibodies

Immovable HIV-specific antibodies are used as 'bait' for HIV-specific proteins (i.e. antigens) in the human blood sample

Bound HIV antigens are made visible by labelled antibodies that bind to the HIV antigens

studua

mprovements	s in E	ELISA	testing	for HI∖	/
-------------	--------	-------	---------	---------	---

1 st gen	2 nd gen	3 rd gen	4 th gen
Detects IgG Abs to HIV-1 whole viral lysate	Detects IgG Abs to HIV-1 and HIV-2 using synthetic peptides	Detects both IgG and IgM Abs to HIV-1 and HIV-2	Same as 3 rd PLUS HIV-1 p24 Ag

Western Blot

In a nutshell: you work with prepared samples of HIV proteins and look to see if the patient has any antibodies that stick to them

HIV envelope: gp41, gp120/go160 Core: p17, p24, p55 Enzymes: p31, p51, p66

+ = antibody against envelope protein AND: either one core or enzyme

Used as confirmatory testing

RT-PCR

Materials:

Viral RNA **dNTPs RNAse** Primer **DNA** polymerase Reverse transcriptase

Product:

cDNA

95°C

~50°C

mm -

72°C

5

3'

P2

qRT-PCR

What: Amplification and product detection in one go

Fluorescent dyes specifically label DNA of interest (SYBR Green or TaqMan)

Many uses:

Gene expression analysis, cancer biomarker identification, SNP genotyping, protein analysis

Practice Questions: https://www.wooclap.com/DZZMXB

Thank you and happy studying

Lippincott Chapter 34: Biotechnology and Human Disease

