Concentration expressions, dilution and mixing

Matthew Hryniewicki

Q1

How many grams of NaCl and water are there in 80 g of 20% solution?

Q2

There are 12.04×10^{14} molecules of HCl in $100 \mu \mathrm{~L}$ of solution. The concentration of HCl is:

Value Prefix Symbol 10^{12} tera T 10^{9} giga G 10^{6} mega m 10^{3} kilo k 10^{-3} milli m 10^{-6} micro μ 10^{-9} nano n 10^{-12} pico p 10^{-15} femto f 6.02×10^{23} ne number of particles in one mole of a substance

A. $2 \mu \mathrm{M}$
B. $20 \mu \mathrm{M}$
C. 2 mM
D. 20 mM
E. 20 nM

Avogadro's number

Q3

Calculate the molar concentration of acetic acid if 20 mL of 0.05 M NaOH was used for titration of 10 mL of acid sample.

Q4

20 mL of $10^{-2} \mathrm{M} \mathrm{NaOH}$ was used for titration of 5 mL HCl sample. What was the HCl concentration in the sample?

studyaid

Q5

How many mL of water should be added to 2 ml of 0.2 M solution to obtain 20 mM solution?
A. 1.8
B. 18
C. 20
D. 180
E. 200

The Dilution Equation

$$
M_{1} V_{1}=M_{2} V_{2}
$$

$\mathrm{M}_{1}=$ initial molarity ("stock solution")
$\mathrm{V}_{1}=$ initial volume (Liters)
$M_{2}=$ final (desired) molarity
$V_{2}=$ final volume (Liters)

This equation is used when you have a "stock solution" of higher molarity than you need and you need to dilute it to a lower molarity by adding additional solvent.

Q6

How many grams of KCl should be dissolved in 50 g of water to obtain 5% solution?

Q7

KCl solution contains 2 mg of this compound in 1 ml of solution ($\mathrm{d}=1 \mathrm{~g} / \mathrm{ml}$)

Calculate the \% concentration.

Q8

Water solution contains 40 mg of NaOH in 100 g of the solution. ($\mathrm{d}=1 \mathrm{~g} / \mathrm{mL}$)
Molar mass of NaOH is $40 \mathrm{~g} / \mathrm{mol}$.
Molar and \% concentrations are respectively:
A. 0.01 M and 0.04%

B. 0.1 M and 0.1%
C. 0.01 M and 0.4%
D. 1 mM and 0.04%
E. 0.1 M and 0.4%

Q9

Calculate molar (M), millimolar (mM) and micromolar ($\mu \mathrm{M}$) concentration if HCl solution contains 3.65 mg in 1 mL .

$M \mathrm{HCl}=36.5 \mathrm{~g} / \mathrm{mol}$

Value	Prefix	Symbol
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-3}	milli	m
10^{-6}	mano	m
10^{-9}	femto	n
10^{-12}		f
10^{-15}		

Q10

When 0.25 mole of an anesthetic is dissolved in 500 mL of an injectable water the concentration of the final solution is:
A. 0.5 M
B. 0.25 M
C. 1 M
D. $2 M$

E. $4 M$

Q11

How many moles of NaCl is in $100 \mu \mathrm{~L}$ of 1 mM NaCl solution:
($1 \mathrm{~L}=10^{6} \mu \mathrm{~L}$)
A. 1 mmol
B. $10^{-3} \mathrm{~mol}$
C. $10^{-2} \mathrm{mmol}$
D. $10^{-7} \mathrm{~mol}$
E. $10^{-3} \mathrm{mmol}$

Q12

How many mL of water should be added to 20 mL of 0.2 M solution to obtain 0.01 M solution?
($\mathrm{d}=1 \mathrm{~g} / \mathrm{mL}$)

The Dilution Equation

$$
M_{1} V_{1}=M_{2} V_{2}
$$

$M_{1}=$ initial molarity ("stock solution")
$V_{1}=$ initial volume (Liters)
$M_{2}=$ final (desired) molarity
$V_{2}=$ final volume (Liters)

This equation is used when you have a "stock solution" of higher molarity than you need and you need to dilute it to a lower molarity by adding additional solvent.

Q13

How many grams of 1% solution(A) and 0.1% solution (B) should be mixed to obtain 180 g of 0.5% solution (C)?

Q14

How many mL of 0.09 M solution (A) and 0.01 M solution (B) should be mixed to obtain 100 mL of 0.02 M solution (C)?

Q15

Solution A was diluted 5 times with water.
Then $20 \mu \mathrm{~L}$ of the resulting solution B was mixed with 0.48 mL of water (solution C)
and finally $200 \mu \mathrm{~L}$ of solution C was introduced to the volumetric flask of the nominal volume 10 mL .
The flask was filled with water and the molarity of the solution in the flask was assayed $1 \mu \mathrm{M}$.

Calculate the initial molarity of solution A.

Q16

100 mL of 2 mM KOH solution was mixed with 400 ml of 1 mM HCl solution. Calculate molar concentrations (M) of all compounds in the reaction mixture.
($\mathrm{d}=1 \mathrm{~g} / \mathrm{mL}$)

Q17

In the iron (III) sulfate (VI) solution the concentration of sulfate anions is 3 mM . The salt concentration is:
A. 3 mM
B. 0.3 mM
C. 1 mM
D. 0.1 mM
E. 10 mM

Q18

When hard water is heated, Ca^{2+} ions react with bicarbonate ions to form insoluble calcium carbonate CaCO_{3}.
The reaction allows to soften the water:
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{HCO}_{3}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})$
What is the mass of CaCO_{3} in the reaction if 2 moles of CO_{2} are produced? ($\mathrm{MCaCO}=100 \mathrm{~g} / \mathrm{mol}$)
A. 100 g
B. 200 g
C. 44.8 g
D. 22.4 g
E. 400 g

studyaid

Q19

How many grams of CO_{2} is produced in the reaction of decomposition of 50 g of CaCO_{3} ?
$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
$M \mathrm{CaCO}_{3}=100 \mathrm{~g} / \mathrm{mol}$
$\mathrm{MCO}_{2}=44 \mathrm{~g} / \mathrm{mol}$
A. 44 g
B. 88 g
C. 22 g
D. 11 g
E. 100 g

studyaid

Q20

The percentage concentration of any solution is commonly expressed as mass percent.
What is the $\mathrm{H}_{2} \mathrm{SO}_{4} \%$ concentration if 2% of all molecules in the water solution are $\mathrm{H}_{2} \mathrm{SO}_{4}$?
(Atomic masses of H, S and O are 1.0, 32.0 and $16.0(\mathrm{~g} / \mathrm{mol})$ respectively)
A. 1.0
B. 1.1
C. 10.0
D. 11.1
E. 2.0

