Amino Acids

By Inga Borchgrevink

studyaid

General structure

* Backbone
- Amino group, a-carbon, carboxyl group, hydrogen
* Unique side chains
* Zwitterions = dipolar ions
- ion possessing both pos and neg electrical charges
- All free aa are water soluble at physiological pH

L-a-amino acids

* chiral carbon $=4$ single bonds and 4 different groups attached to it
* amino group is attached to the a-carbon in the L-configuration
* L = left = life (except Glycine)

Side Chain
 Classification

Correct!
This is Cysteine. (Cys, C)

Nonpolar aliphatic

* Hydrophobic = phobia of water
* Van der Waals forces
* Aliphatic = only H and C and single bonds
* Glycine
- Simplest aa
- Not asymmetric
* Alanine + BCAA
- High degree hydrophobicity
* Proline
- Side chain forms a ring that include its backbone \rightarrow restrict the conformation of the protein

Aromatic

* Aromatic = sixmembered carbon-hydrogen ring with three conjugated double bonds (benzene or phenyl)
* Absorbe UV-light

Phenylalanine

- Nonpolar
* Tyrosine
- OH - group on phenyl ring \rightarrow form hydrogen bonds
- Polar

Tryptophan

- N in the ring \rightarrow form hydrogen bonds
- Polar

Aromatic

Phenylalanine (phe, F)

More Polar

Tyrosine (tyr, Y)

Tryptophan (trp, W)

Polar, Uncharged

* Hydrophilic = O water
* Asparagine and Glutamine
- Amide group \rightarrow hydrogen bonds
* Serine and Threonine
- Hydroxyl group \rightarrow hydrogen bonds

Sulfur containing

* Cysteine
- Sulfhydryl group \rightarrow covalent disulfide bond with other cysteine
- Polar
* Methionine
- does not contain sulfhydryl group \rightarrow cannot form disulfide bonds!
- nonpolar

Sulfur-Containing

Methionine (met, M)

Cysteine (cys, C)

Charged

Acidic

- Carboxylic acid group
- Negative charge at physiological pH
- Polar
- Ionic and hydrogen bonds, salt bridges

Basic

- Nitrogen that can be pronated
- Positive charge at physiological pH
- Polar
- Ionic and hydrogen bonds, salt bridges

Bonds from side chains

Hydrogen bonds

- Polar
- Hydrogen with NOF
B. Hydrogen bonds

Disulfide bond

- Cys - Cys

Ionic

- Neg AA - pos AA

Jyaid

Peptide bond

* CONH

* Condensation reaction
* \rightarrow make polypeptides
* Always planar \rightarrow very little rotation
\rightarrow stabilize protein structure
* Usually trans configuration
* Always read from $\mathrm{N} \rightarrow \mathrm{C}$

pKa

* pKa $=$ pH at which 50% of the protons have dissociated
* Each group that has a dissociable proton, have a pKa
- In polypeptides only the first amino group and the last carboxyl group + side chains have pKas

Isoelectric point=pl/IEP

$\star=$ the pH at which the NET charge is 0

* If $3 \mathrm{pKa} \rightarrow$ use the ones on each side of net charge 0

$$
p l=\frac{p K a_{1}+p K a_{2}}{2}
$$

介Free H+

 \downarrow Free H+Molecules wants to KEEP H for themself

Molecules wants to GIVE H away

今Free H+

Alanine in different pH
$p K a_{1}=2,3, \quad p K a_{2}=9,7$

$\sqrt{5}$ Free H+

+1
2,3
9,7
$p I=\frac{2,3+9,7}{2}=6$
OIF $\begin{gathered}\text { Physiological } \mathrm{pH}: \\ \text { Charge }=0\end{gathered}$

Arginine shows 3 pKas at 1.8, 9.0 and 12.5. What is the charge at physiological pH (7.4) and the pl value?

Arginine in different pH

Physiological pH:
Charge $=+1$ / Charge $=+1$
pH

$$
p I=\frac{9,0+12,5}{2}=10,75 \text { sfudyaid }
$$

Draw all possible ionic forms of dipeptide Ala-Cys and choose which form is predominant at:
a) $\mathrm{pH}=\mathrm{pl}$
b) $\mathrm{pH}>\mathrm{pl}$
c) $\mathrm{pH}<\mathrm{pl}$

Ala: $\mathrm{pKa}(\mathrm{COOH})=$ 亿, $\mathrm{pKa}(\mathrm{NH} 3+)=9,69$;
Cys: $\mathrm{pKa}(\mathrm{COOH})=2,0, \mathrm{pKa}(\mathrm{NH} 3+)=\mathrm{pKa}(\mathrm{SH})=10,3$

̂Free H+

\downarrow Free H+

Ala: $\mathrm{pKa}(\mathrm{NH} 3+)=9,69$; Cys: $\mathrm{pKa}(\mathrm{COOH})=2,0, \mathrm{pKa}(\mathrm{SH})=10,3$

pH<pl
2
$\mathrm{pH}=\mathrm{pl}$
9,69
$\mathrm{pH}>\mathrm{pl}$
10,3
pH \gg pl

Physiological pH:
Charge $=0$
pH

$$
p I=\frac{2+9,69}{2}=5,845 \text { stuaid }
$$

Electrophoretic separation

* Use electrical charge to separate AA and proteins
* If pH = pl the protein will stand still
* If pH < pl \rightarrow move to cathode
* If pH > pI \rightarrow move to anode

Cathode

$\mathrm{pl}=$ the pH where net charge is 0!!!

$$
\star \mathrm{pl}=6, \mathrm{pl}=7, \mathrm{pl}=8
$$

Anode
$+$
studyaid

Protein and enzymes

studyaid se

Peptides \rightarrow Proteins

* Peptides = short polymers of amino acids
- Each unit (aa) is called a residue
- 2 residues - dipeptide
- 3 residues - tripeptide
- 12-20 residues - oligopeptide
- < 51 - polypeptide
- > 51 - protein
* Always $N \rightarrow$ C

Levels of protein structure

- Primary -
- sequence of aa
- Secondary
- a-helix, b-sheets and turns
- stabilized by hydrogen bonds
- Tertiary
- 3D configuration
- Domains and folds
- Makes binding site for ligands
- Quaternary

- two or more subunits
- Binding site for ligands

Enzymes

$\dot{*}=$ proteins that act as catalysts

* \rightarrow increase the rate of chemical reactions
* Bind reactants (substrates)
\rightarrow convert them to products
\rightarrow release the products

* May be modified during their participation, but return to their original form
* Regulate the rate of metabolic pathways in the body ++

resu 4tw 苗綇

Co Copy_participation link

4
Go to wooclap.com
Enter the event code in the top banner

Event code
CUPHZO

