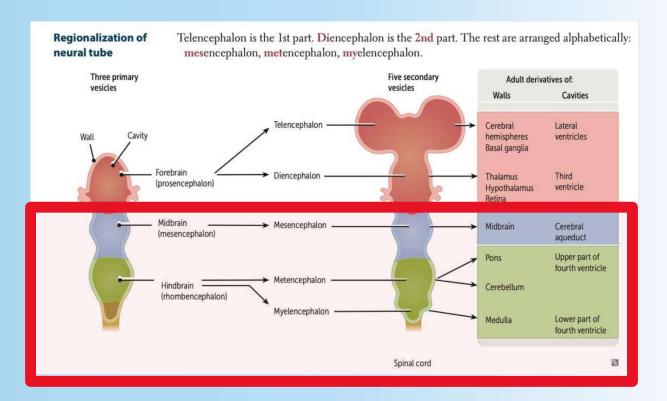

The Brainstem: Structure & Function

Sebastian Wolinski

Objectives


- Quick Embryology recap
- Cranial Nerves (rule of 4's)
- Basics of Brainstem
- Midbrain
- Pons
- Medulla
- Blood Supply & Strokes

Quick Embryology

"Tie, Di, Mes Met My"

The Rule of 4's

- The simplest way to remember which Cranial Nerves go where:
- I + II = above brainstem
- | III + IV = Midbrain
- V, VI, VII, VIII = Pons (4)
- IX, X, XI, XII = Medulla (4)

Basics of the Brainstem

With Cranial Nerves and nuclei, you can easily divide their location in the brainstem via their NUMBER and FUNCTION

MOTOR nuclei are **MEDIAL**, Sensory are found Lateral.

I, II → above brainstem, uninvolved

III, IV (midbrain)

- III is predominantly motor = medial (E-W too)
- IV is pure motor = medial

V, VI, VII, VIII (pons)

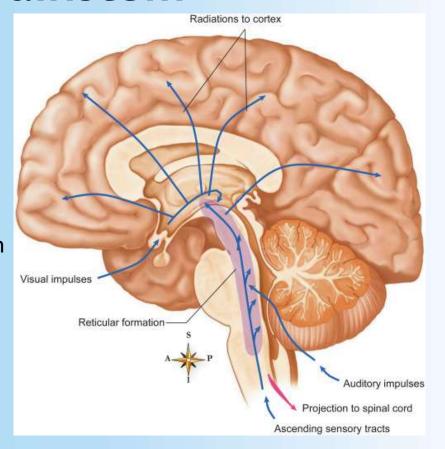
- V mostly sensory, and HUGE, and found laterally.
 - → even stretches into medulla
- **VI** is pure motor = medial
- VII is a strong mix of motor (facial expression) and sensory (taste)
 - → sits on border of medial/lateral division
- VIII pure sensory = lateral, and sits at pontomedullary angle aka cerebellopontine angle

IX, X, XI, XII (medulla)

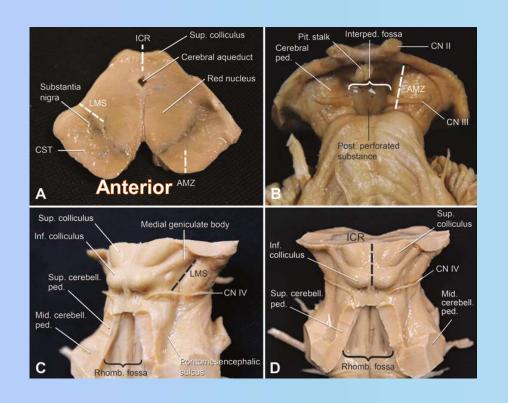
- IX largely sensory so → lateral
- X lots of nuclei, but found dominantly lateral
- XI is outside brainstem
- XII pure motor = medial

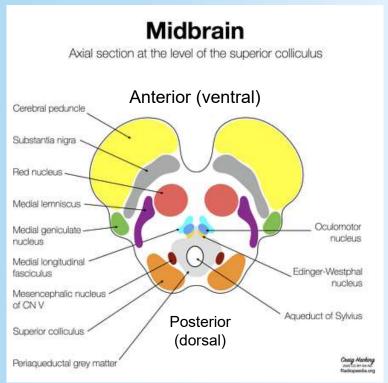
Basics of the Brainstem

Spinal Tracts


- To get to the spinal cord, or cerebellum, all spinal tracts must travel through the brainstem!
- You can easily identify starting destination & final destination
 - E.g. Corticospinal → Cortico = Start in cortex & spinal = end in spinal cord (UMN)
 - E.g. Corticobulbar → Cortico = Cortex, bulbar = brainstem
- Most importantly, the:
 - Corticospinal tract,
 - Dorsal Column ML,
 - Spinothalamic tract,
 - Sympathetic (hypothalamospinal) tract
- travel the FULL course of the brain stem

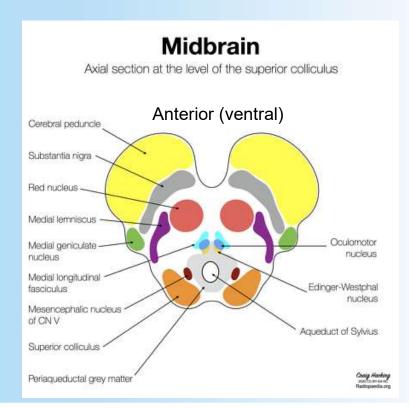
Basics of the Brainstem


Reticular Formation


- Extends through entire brainstem
- Involved in Consciousness
 - Arousal/wakefulness (reticular activating system)
 - Autonomic regulation (breathing, hear rate)
 - Reflexes like swallowing, sneezing, respiration

Midbrain

Intro to Midbrain


AKA the Mesencephalon

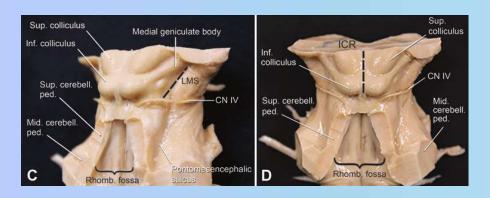
pons is below and the **diencephalon** is above (thalamus & hypothalamus).

Shortest part of brainstem (1.5cm)

The midbrain acts as a superhighway and command center:

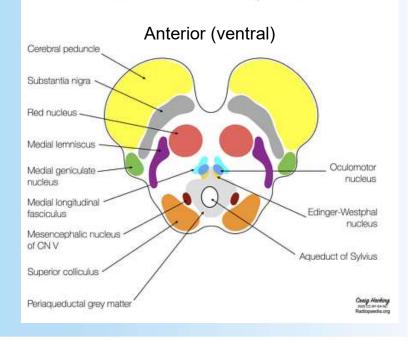
- → Pathway for ascending sensory and descending motor tracts
- → Contains **nuclei** essential for **vision**, **hearing**, **motor control**, **alertness**, and **temperature regulation**

DIVISIONS (From dorsal to ventral)		
Region	Also Known As	Key Structures
Tectum	"Roof"	Superior & inferior colliculi
Tegmentum	"Core"	Cranial nerve nuclei, red nucleus, reticular formation
Basis pedunculi	"Floor" (a.k.a. cerebral peduncles)	Corticospinal/corticobulbar tracts


Midbrain - Tectum (roof)

Tectum (Roof)

Superior colliculi: Visual reflexes (e.g., tracking a moving object)

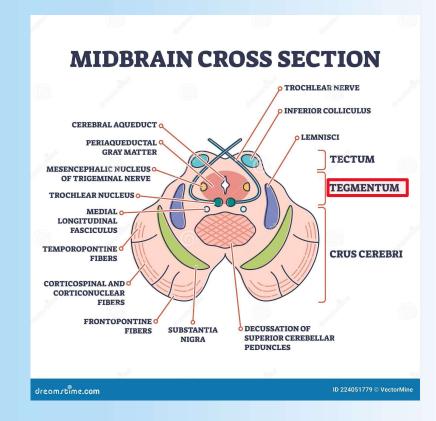

Pinferior colliculi: Auditory reflexes (e.g., turning your head to a loud bang)

Mnemonic: "Superior = Sight, Inferior = Ipod (sound)"

Midbrain

Axial section at the level of the superior colliculus

■ DIVISIONS (From dorsal to ventral)		
Region	Also Known As	Key Structures
Tectum	"Roof"	Superior & inferior colliculi
Tegmentum	"Core"	Cranial nerve nuclei, red nucleus, reticular formation
Basis pedunculi	"Floor" (a.k.a. cerebral peduncles)	Corticospinal/corticobulbar tracts


Midbrain - Tegmentum

AKA Middle area (the core)

- •Red nucleus: Relay for motor coordination (especially limb flexors)
- •Substantia nigra: Dopamine-producing neurons; degenerates in Parkinson's 🥥
- •Periaqueductal gray matter: Pain modulation, around the cerebral aqueduct

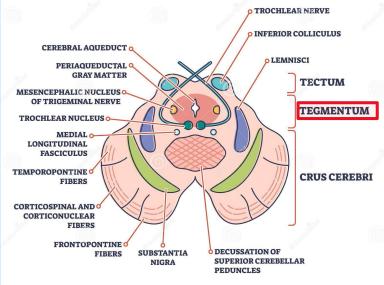
•CN nuclei:

- •Oculomotor nerve (CN III) nucleus (at level of the superior colliculus)
- •Trochlear nerve (CN IV) nucleus (at level of the inferior colliculus)
- •Edinger-Westphal nucleus: Parasympathetic nucleus of CN III (just posterior to CN III)

What are the main functions of the E-W nucleus of CN III?

- Pupillary constriction & Lens accommodation
- (synapses at ciliary ganglion before reaching the eye)

Midbrain -Basis Pedunculi / Crus Cerebri


AKA the Floor

- Contains cerebral peduncles:
- · Corticospinal, corticobulbar, and corticopontine tracts

Q FUNCTIONAL HIGHLIGHTS of MIDBRAIN

- Eye movement control (CN III, IV)
- Auditory and visual reflexes (colliculi)
- Pain inhibition (via periaqueductal gray)
- Motor pathway relay (via red nucleus & substantia nigra)
- Dopaminergic modulation (key for initiating movement)

MIDBRAIN CROSS SECTION

dreamstime.com

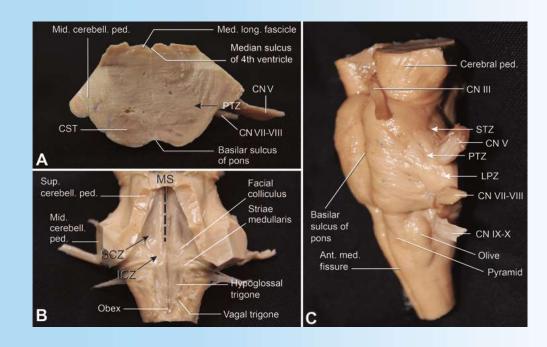
ID 224051779 © VectorMine

What eye movement are we missing?

Abduction of eye via Lateral rectus m. from CN VI

Pons

n Location:


Above: Medulla **Below**: Midbrain

•Posteriorly: Forms the floor of the 4th ventricle

•Looks like a bulging belly on the anterior brainstem

Latin "pons" = bridge, because it connects the cerebrum to the cerebellum via the middle cerebellar peduncles

- •Contains the Locus Coeruleus:
- → Produces NOREPINEPHRINE for the CNS (90%)
- → Involved in arousal, attention, stress response
- → Degenerates in Parkinson's, Alzheimer's

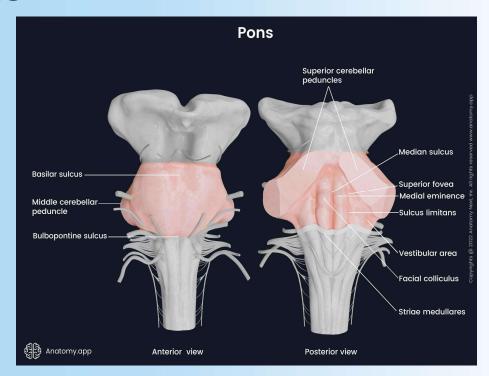
DIVISIONS			
Region	Description	Main Contents	
Basilar (ventral) pons	Motor tract-heavy front	Corticospinal & corticobulbar tracts, pontine nuclei	
Tegmental (dorsal) pons	Nuclei & cranial nerve goodness	CN nuclei, reticular formation, sensory tracts	

Pons

Basilar Pons:

(the anterior side)

•Corticospinal tract: Descending motor pathway


•Corticobulbar tract: From cortex to CN nuclei

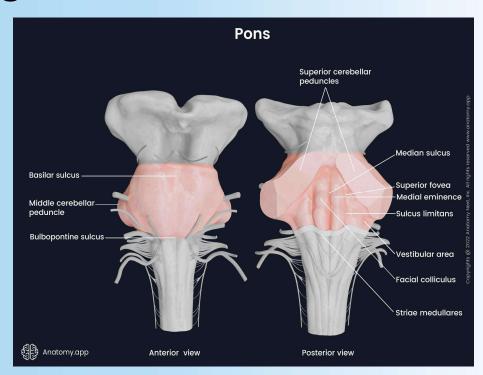
•Pontine nuclei: Relay motor signals to the cerebellum

•Transverse pontine fibers → enter middle cerebellar peduncle

•The pontine nuclei relaying info → cerebellum allows us to have fine motor movement

DIVISIONS		
Region	Description	Main Contents
Basilar (ventral) pons	Motor tract-heavy front	Corticospinal & corticobulbar tracts, pontine nuclei
Tegmental (dorsal) pons	Nuclei & cranial nerve goodness	CN nuclei, reticular formation, sensory tracts

Tegmentum of Pons:


(the posterior side)

- •Ascending sensory tracts:
- •Medial lemniscus (fine touch, vibration)
- •Spinothalamic tract (pain/temp)
- •Reticular formation: Keeps you awake and breathing

Cerebellar Peduncles

- •Middle cerebellar peduncle: Biggest one—motor input from pons \rightarrow cerebellum
- •Superior cerebellar peduncle (upper pons): Output from cerebellum → midbrain/thalamus
- •CN nuclei:
- •CN V trigeminal: motor & sensory (mid-pons)
- •CN VI abducens (lower pons, medial)
- •CN VII facial (lower pons, lateral)
- •CN VIII vestibulocochlear (at pontomedullary junction)

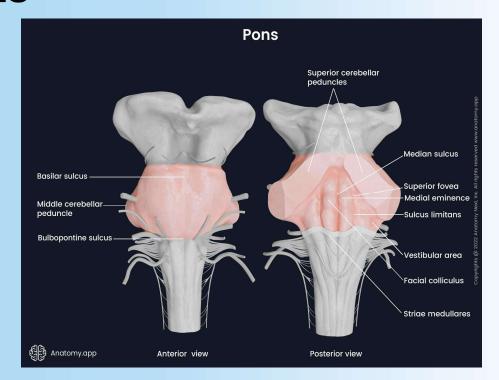
Pons

6 FUNCTIONAL HIGHLIGHTS

Pons

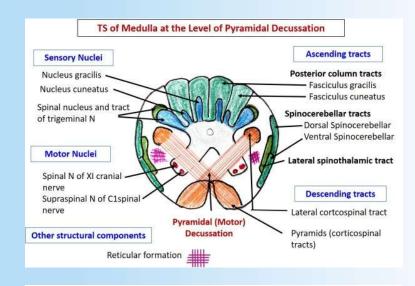
- •Relay station: Cortex ↔ Cerebellum communication
- •Motor control: Pontine nuclei are for fine-tuning movement
- Cranial nerve functions:
 - CN V facial sensation, mastication
 - CN VI lateral eye movement
 - CN VII facial expression, taste (ant. 2/3), lacrimation, salivation
 - CN VIII balance and hearing

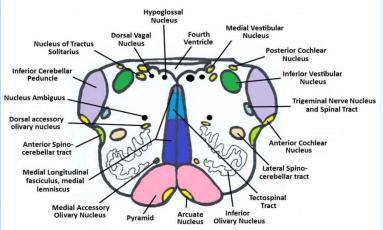
CADAVER TIPS


Basilar pons = Large round ventral (anterior) part packed with vertical **motor tracts** and horizontal transverse fibers

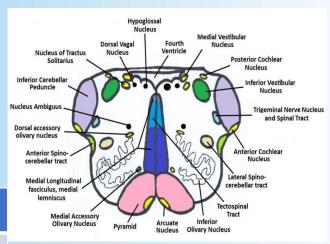
Cranial nerves:

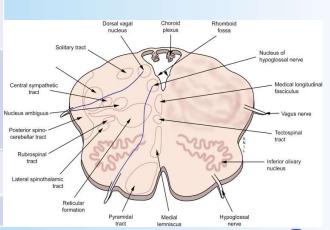
- → CN VI exits medially at pontomedullary junction AKA Cerebellopontine angle
- → CN VII & VIII exit more laterally
- the facial nerve takes a looping path:


"Facial nerve takes the scenic route"


→ CN VII loops around the abducens nucleus inside the pons!

- Cranial Nerve Nuclei
- CN IX glossopharyngeal
- CN X vagus
- CN XI accessory (cranial root)
- CN XII hypoglossal





· Combo Nuclei of the Medulla

Nucleus	Cranial Nerve(s)	Function	Location
Nucleus Ambiguus	CN IX, X, XI	Motor to pharynx, larynx, soft palate (Swallowing & speaking)	Lateral Medulla
Dorsal motor nuc. of Vagus	CN X	PARASYMPATHETIC to heart, lungs, GI	Posterior medulla (beneath 4 th ventrical)
Nucleus tractus Solitarius	CN VII, IX, X	TASTE (VII → ant. 2/3 of tongue, IX + X → post 1/3) epiglottis & visceral afferents (baroreceptors)	Dorsal medulla
Spinal trigeminal nucleus	CN V, VII, IX, X	Pain & temp. from the face	Lateral medulla, extending from pons
Hypoglossal nucleus	CN XII	Motor to tongue	Medial Medulla

Nucleus Ambiguus

- Medulla
- CN IX, X, XI
- IX (glossopharyngeal)
- X (vagus)
- Work together for swallowing. N. Ambiguus essentially coordinates the movement of swallowing

S - Swallowing

Controls the muscles of the pharynx and larynx (via CN IX & X)

W - Words

Speech production through laryngeal muscles (think hoarseness when it's damaged)

A - Autonomic control of the heart

Parasympathetic innervation to the heart via CN X (minor role, slows heart rate)

G – **Gag reflex motor** (efferent limb via CN X)

Dorsal Motor nucleus of vagus (CN X)

- Medulla
- CN X

S - Swallowing

Controls the muscles of the pharynx and larynx (via CN IX & X)

W - Words

Speech production through laryngeal muscles (think hoarseness when it's damaged)

A – Autonomic control of the heart

Parasympathetic innervation to the heart via CN X (minor role, slows heart rate)

G - Gag reflex motor (efferent limb via CN X)

- Is the epicenter of parasympathetic release from the vagus nerve.
 - E.g.
 - Heart
 - Lungs
 - GI tract (pancreas, gallbladder, secretions
 - Kidney

Nucleus Tractus Solitarius

- Medulla
- Parasympathetic innervation to the heart via CN X (minor role, slows heart rate) G - Gag reflex motor (efferent limb via CN X) CN VII, IX, X It's called "solitary" because it carries visceral (internal organ) sensory fibers, which
- **Mnemonic:**
 - "NTS = Nice Taste Station"...
 - and also "Nervous Traffic Sensor" because it's always monitoring autonomic input.

are distinct from somatic sensory fibers — they run alone, hence: "solitary".

Baroreceptors & Chemoreceptors (GVA)

CN IX, X

Carotid sinus, aortic arch

Controls the muscles of the pharynx and larynx (via CN IX & X)

A - Autonomic control of the heart

Speech production through laryngeal muscles (think hoarseness when it's damaged)

Taste (SVA)

CN VII, IX, X

Tongue, epiglottis

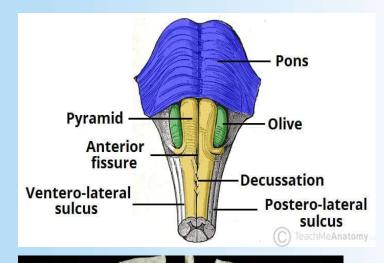
S - Swallowing

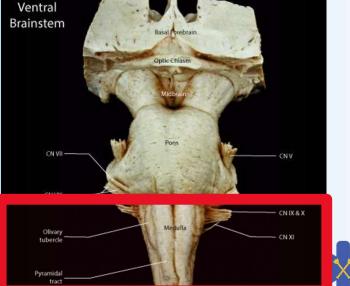
W - Words

Spinal Trigeminal Nucleus

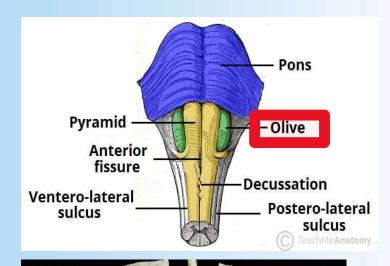
Afferent Inputs (1st-or	idel fledions).
Nerve	Sensory Info
CN V (Trigeminal)	Face (main source)
CN VII (Facial)	Part of the external ear
CN IX (Glossopharyngeal)	Posterior tongue, pharynx
CN X (Vagus)	External auditory canal, larynx

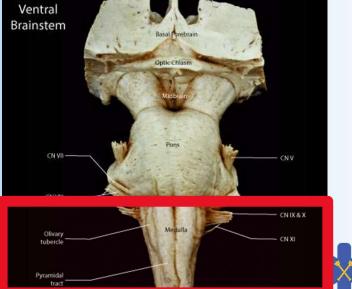
- Medulla
- CN V, VII, IX, X
- Spinal because it stretches from Midbrain to spinal cord
- Pure sensory (afferent) from the face and the oropharynx
- All sensory from the CN's above come to the STN, synapse and then move up to the Ventral Posteromedial Nucleus (VPM) → Primary Sensory Cortex

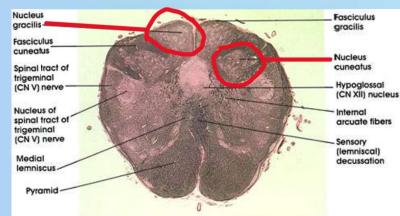



Hypoglossal nucleus

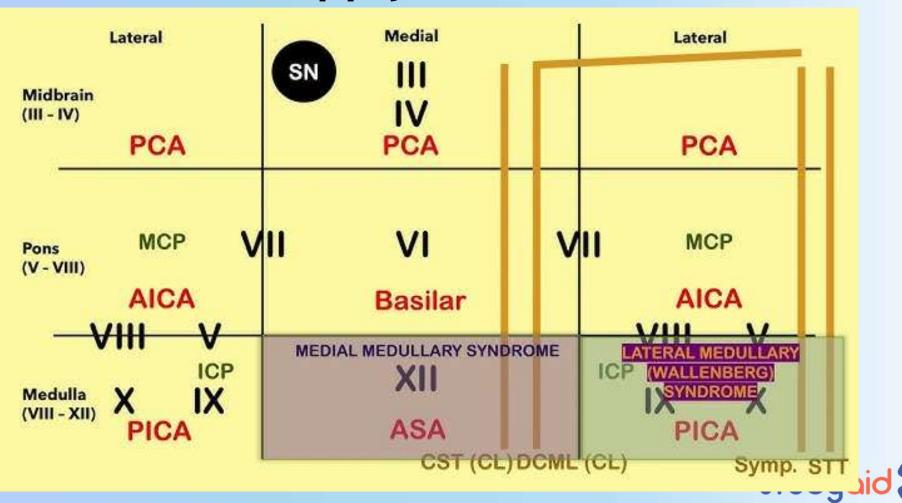
• CN XII, pure motor to tongue ©

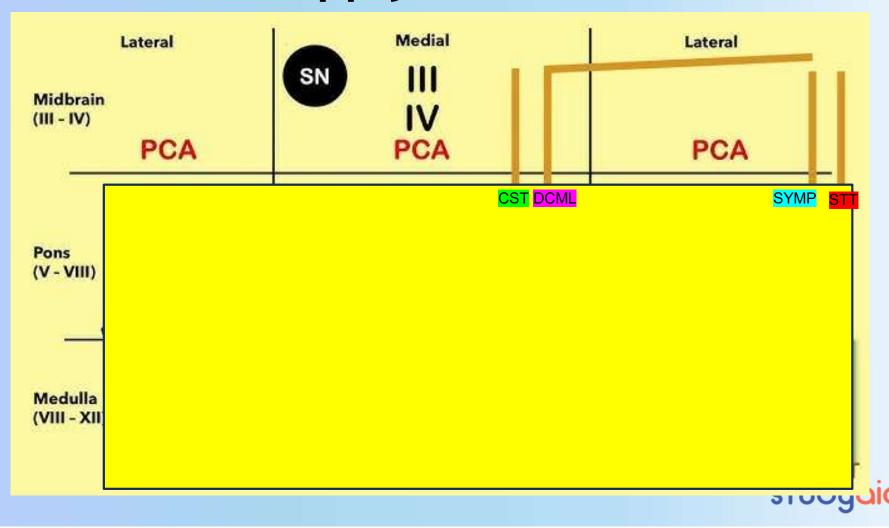


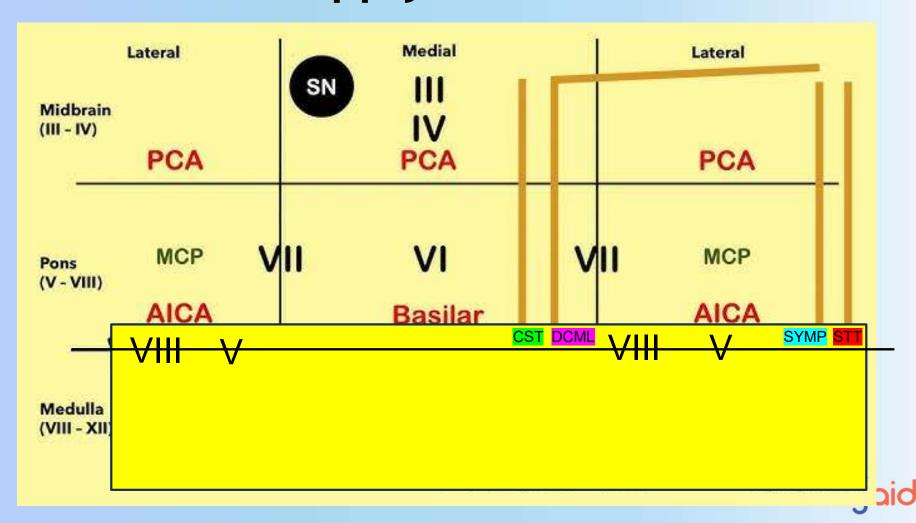

- Anatomical Structures
- Pyramids (anterior)
 - Contain corticospinal tracts
 - Site of pyramidal decussation (crossing over of motor fibers)
- Lesion above = contralateral symptoms; below = ipsilateral
 - E.g. Stroke above medullary pyramids in medial part of the right Motor cortex
 - Contralateral loss of movement in <u>Left Leg</u>
 - E.g. Lesion below at level of C7, in the left half of spinal cord
 - **Ipsilateral** loss of movement in Left Leg, (and triceps & fingers)

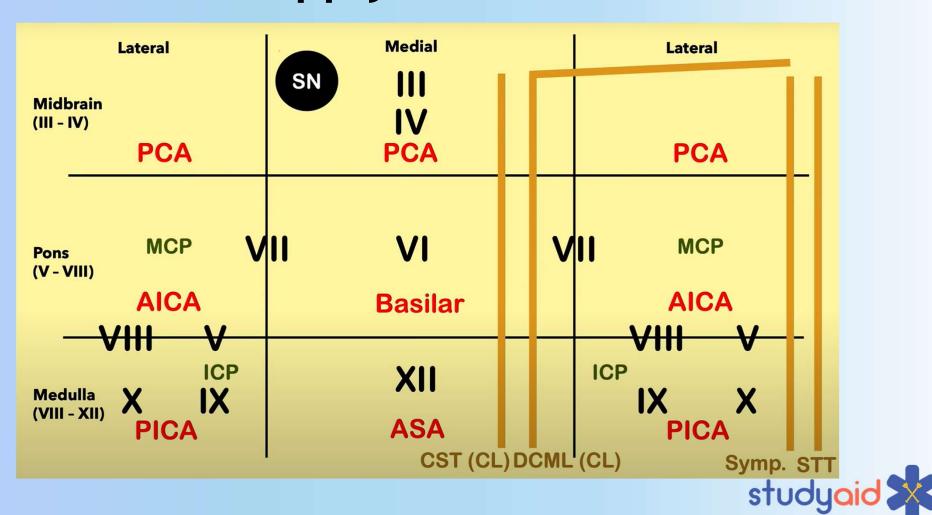


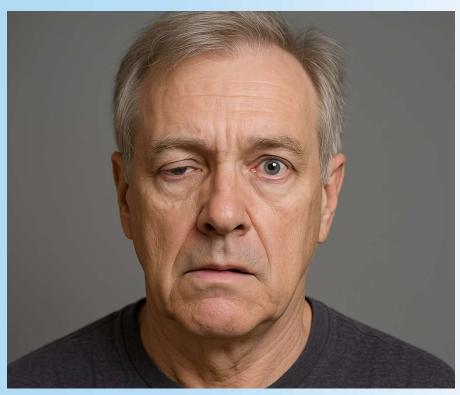
- Olives (lateral bulges)
- Contain the inferior olivary nucleus: motor learning & cerebellar relay




- Anatomical Structures
- Posterior Column Nuclei
- Nucleus gracilis (legs)
- nucleus cuneatus (arms)
- Receive sensory info (fine touch, vibration, proprioception) from the spinal cord
- Fibers decussate as internal arcuate fibers and form the medial lemniscus







- A 71-year-old man presents with sudden dizziness, nausea, hoarseness, and numbness. On exam:
- He has loss of pain and temp on the left side of his body and right side of his face.
- His voice is hoarse, with dysphagia.
- He is ataxic on the right side, with vertigo and nystagmus.
- He has ptosis and miosis on the right side.

- A 71-year-old man presents with sudden dizziness, nausea, hoarseness, and numbness. On exam:
- He has loss of pain and temp on the right side of his body and left side of his face.
- His voice is hoarse, with dysphagia.
- He is ataxic on the left side, with vertigo and nystagmus.
- He has ptosis and miosis on the left side.

- What Cranial Nerves are involved, and what part of the brainstem would that point us to?
- Are the CN's located laterally or medially?
- What artery is infarcted?

#1 = Lateral Medullary (Wallenberg) Syndome

A 71-year-old man presents with sudden dizziness, nausea, hoarseness, and numbness. On exam:

- He has loss of pain and temp on the right side of his body and left side of his face.
- His voice is hoarse, with CNIX, X dysphagia.
- He is ataxic on the left side, with vertigo and nystagmus.
- He has ptosis and miosis on the left side.

 Horner Syndrome:
 Symp tract

What Cranial Nerves are involved, and what part of the brainstem would that point us to?

Are the CN's located laterally or medially?

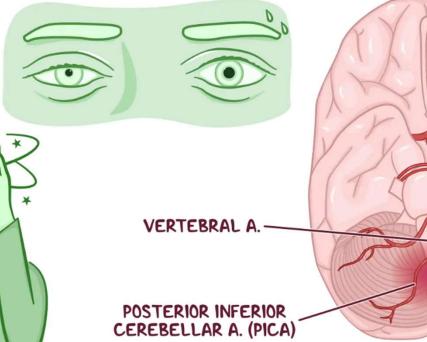
Lateral & Lateral, Symp and ST tract are also lateral

What artery is infarcted?

WALLENBERG SYNDROME

"LATERAL MEDULLARY SYNDROME" OR
"POSTERIOR INFERIOR CEREBELLAR ARTERY (PICA) SYNDROME"

SYMPTOMS:


 HORNER SYNDROME (DECREASED PUPIL SIZE, DROOPING EYELID, DECREASED SWEATING)

DIZZINESS

(OSMOSIS.org

Patient: A 58-year-old man presents with sudden vertigo, nausea, left-sided facial weakness, and difficulty hearing in his left ear.

He also reports loss of balance and a sensation of falling to the left.

Q Exam Findings:

Left LMN facial palsy: Weakness of both upper and lower face

Left hearing loss: Sensorineural

Left-sided ataxia: Uncoordinated limb movement, wide-based gait

Left-sided facial numbness (pain/temp): Feels like "a dentist shot gone wrong"

Right-sided body numbness (pain/temp): In arm and leg

Left Horner's syndrome: Ptosis, miosis, anhidrosis

Nystagmus and vertigo when asked to fix gaze

Exam Findings:

Left LMN facial palsy: Weakness of both upper and lower face

- Left hearing loss
- Left-sided ataxia: Uncoordinated limb movement, wide-based gait
- Left-sided facial numbness (pain/temp): Feels like "a dentist shot gone wrong"
- Right-sided body numbness (pain/temp): In arm and leg
- Left Horner's syndrome: Ptosis, miosis, anhidrosis
- Nystagmus and vertigo when asked to fix gaze (look straight at object)

- What Cranial Nerves are involved, and what part of the brainstem would that point us to?
- Are the CN's located laterally or medially?
- What artery is infarcted?

Left LMN facial palsy: Weakness of both upper and lower face

- Left hearing loss CN VIII
- Left-sided ataxia: Uncoordinated limb movement, wide-based gait

CN VIII

• Left-sided facial numbness (pain/temp): Feels like "a dentist shot gone wrong"

CN V

- Right-sided body numbness (pain/temp): In arm and leg
 Spinothalamic tract
- Left Horner's syndrome: Ptosis, miosis, anhidrosis
 Sympathetic tract
- Nystagmus and vertigo when asked to fix gaze (look straight at object)

- What Cranial Nerves are involved, and what part of the brainstem would that point us to?
- Are the CN's located laterally or medially?

CN V is lateral, VII is on the border, CN VIII lateral STT and Sympathetic tract are both lateral

What artery is infarcted?

AICA

Some (not) Fake news for you!

Good Luck on Exam Day!

