Respiratory control

By Alexandra K Vedeler

MD 6/6

Let's get control of that breathing

Involuntary breathing

- Active inspiration and passive expiration
- The respiratory control center
- Central chemoreceptors
- Peripheral chemoreceptors

Voluntary breathing

• Active inspiration and expiration

• Exercise

- Ventilation and perfusion
- Changes due to exercise

Lungs: *breathing normally* Brain: *thinks about breathing* Lungs:

Involuntary breathing = unconscious breathing

The Medullary Centers

Responsible for the periodic nature, and the generation of the basic rythm of breathing.

The Medullary Centers

Responsible for the periodic nature, and the generation of the basic rhythm of breathing.

The Expiratory Center (VRG)

- Responsible for expiration
- Expiration is passive during normal, quiet breathing = VRG in gear 1
- During forceful expiration, like exercise = VRG in gear 5
- Inhibits:
 - The apneustic center

The Pontine Centers

Modifies the activities of the medullary center

The Pneumotaxic Center

- Regulation of respiratory rate and pattern of breathing by limiting or delaying inspiration
- Inhibits:
 - Apneustic center
 - Inspiratory center (DRG)

The Pontine Centers

Modifies the activities of the medullary center

The Apneustic Center

- Promotes deep, prolonged inspiration (apneusis)
- Activates DRG
- Inhibited by:
 - Penumotaxic center
 - Expiratory center (VRG)
 - Lung stretch receptors

Let's review

pons

medulla

Brain stem center	Inspiration	Expiration	Main action
Pneumotaxic center		X passive	Control of respiratory rate and pattern
Apneustic center	Х		Triggers prolonged inspiration
Inspiratory center = Dorsal respiratory group	Х		Generation of the basic rhythm of breathing
Expiratory center = Ventral respiratory group		X active	Generation of the basic rhythm of breathing <i>Active during exercise</i>

studyaid 🔀

$$\uparrow$$
 H⁺ = \downarrow pH → \uparrow Breathing rate

Overview of other receptors

	Lung stretch receptors	Muscle-joint receptors	Irritant receptors	Juxtacapillary receptors
Туре	Mechanoreceptor	Mechanoreceptor	Rapidly adapting receptors	Sensory nerve endings
Location	Airway smooth muscle	Joints and muscles	Between airway epithelial cells	Alveolar walls
Stimulation	Distension of the lungs	Movement of limbs during exercise	Noxious chemicals and particles	↑ blood volume ↑ interstitial fluid volume
Effect on respiratory rate	\downarrow	1	1	↑
Reflexes	Hering-Breuer reflex*		Coughing reflex	
				study

Let' take a deep breath

Clinical correlation

Mr. Stress is been under a lot of pressure at work lately. One late evening, 1 hour before the deadline of handing in the annual work report he starts sweating, his heart is racing and his breathing rate increases.

He is hyperventilating and he starts to feel dizzy. His co-worker, Ms. Namaste, hands him a paper bag and tells him to breathe into it.

He slowly starts to feel better.

Why does the paper bag help Mr. Stress?

