Gluconeogenesis & Cori cycle Glycogen: the making the breaking

By Niki Brzezinski

The agenda

~ 1 hour

Overview Gluconeogenesis

BREAK

Glycogenolysis Glycogenesis Deficiencies

Terminology

Kinase: Add phosphate from ATP +(P) Phosphorylase: phosphate (P) between compounds Phosphatase: Use water to remove phosphate -(P)

Blood Glucose Range 70-100 mg/dL

Insulin helps cells grab glucose from the blood as it travels through your body.

Your body breaks down glucose into energy - glycolysis.

While your glucose is ↑ your liver will store some away 'just in case' - glycogen (leftovers). As time goes by, more and more glucose leaves the blood and glucose levels drop.

When glucose \downarrow then glucagon \uparrow which signals the body to make glucose to maintain the balance range.

Your body makes glucose in 2 ways:

- Gluconeogenesis (from 3 precursors)
- Glycogenolysis

Gluconeogenesis

precursor \rightarrow Glucose

Need 2 pyruvate per glucose

Glucokinase* → glucose-6-phosphatase Hexokinase is in muscle and muscles do not contain glucose-6-phosphatase

3

2

Phosphofructokinase → Fructose 1,6-biphosphatase

The 3 irreversible rxn enzymes that need to be bypassed

Pyruvate Kinase → (a) Pyruvate carboxylase +

(b) Phosphoenolpyruvate carboxyl kinase (PEP Carboxyl Kinase)

studyaid 🔀

Why is biotin important?

Biotin + bicarbonate (uses ATP) \rightarrow carboxybiotin

"loads the enzyme with carboxyl" Pyruvate carboxylase then adds carboxyl to pyruvate \rightarrow OAA

Occurs in mitochondria

C'N

2nd Bypass: Fructose 1,6 biphosphatASE

Bypasses phosphofructokinase-1 <u>RATE LIMITING ENZYME</u> **Inhibited by AMP & F2,6BP** Cytosol

Figure 10.5

Effect of elevated glucagon on the intracellular concentration of fructose 2,6-bisphosphate in the liver. *PFK-2* = phosphofructokinase-2; *FBP-2* = fructose bisphosphatase-2.

3rd Bypass: Glucose-6-phosphatASE

Bypasses Glucokinase

Only present in liver and kidney

Makes glucose

Occurs in the endoplasmic reticulum then transported back to cytosol.

Gluconeogenesis: summary

Pyruvate \rightarrow PEP (repeated 2x/glucose):

- Pyruvate \rightarrow oxaloacetate in <u>mitochondria</u>
- Oxaloacetate \rightarrow malate for export to cytoplasm
- Malate \rightarrow oxaloacetate in cytoplasm
- Oxaloacetate \rightarrow PEP
- Hydrolysis of 1 ATP & 1GTP
- Irreversible pyruvate kinase reaction bypassed by PC & PEPCK

Lactate & glucogenic aminoacids enter at this stage

PEP \rightarrow Fructose-6P (PEP \rightarrow Glyc-3P repeated 2x/glucose):

- PEP \rightarrow Fructose-1,6-BP reactions shared with glycolysis Hydrolysis of 1 ATP & oxidation of 1 NADH
- Irreversible PFK-1 reaction bypassed by Fructose-1,6-
- Biphosphatase
- Glycerol enters at this step

Fructose-6-P \rightarrow Glucose:

- Fructose-6P \rightarrow Glucose-6P reaction shared with glycolysis Irreversible glucokinase reaction of glycolysis bypassed by glucose-6-phosphatase
 - **Reactions shared with glycolysis **Reactions unique to gluconeogenesis

4 ATPs

2 GTPs

2 NADHs

Lactate \rightarrow Pyruvate

Lactate dehydrogenase

Muscles and RBC (lack of mitochondria) make lactate when body needs glucose during hypoxia, ischemia, tumors, high-intensity exercise or rapid energy needs, like fight-or-flight.

Want to avoid \uparrow lactate build up because leads to \downarrow drop in pH (acidosis).

Take the lactate and turn it into pyruvate.

Cori cycle

Amino Acid precursor: Alanine

↑ Acetyl-CoA (from fatty acid oxidation) ⊘ pyruvate dehydrogenase Which leads to ↑ build up of pyruvate

Excess pyruvate → alanine Alanine amino transferase (ALT)

To be transported to liver and transaminases back to pyruvate

Aids in NH4+ out of the body through urea cycle

Main amino acid = ALALINE

Can use others as they enter through TCA cycle \rightarrow Oxaloacetate EXCEPT for Leucine and Lysine

Comparing Cori Cycle & Alanine cycle

Glycerol precursor

Enzymes

Glycerol kinase (adds P)

only found in liver/kidney

Uses an ATP

Glycerol phosphate dehydrogenase

GAP + DHAP = F1,6BP

BIOLOGY READER

Glycogenolysis

 $Glycogen \rightarrow Glucose$

A core protein of glycogenin is surrounded by branches of glucose units. The entire globular complex may contain approximately 30,000 glucose units.

- Glycogen is smaller and more efficient to store
- Fats aren't adequate source, lead to ketone bodies which lowers pH = acidosis
- Glycogen exists as granules in cell cytoplasm with enzymes for both glycogenesis and glycogenolysis.

Glucose around glycogenin in

- linear α 1,4 bonds
- branched α1,6 bonds

Glycogenolysis step simplified

Take them off 1 at a time till we get to 4 \rightarrow Move over 3, leaving 1 \rightarrow Cut the 1 leftover \rightarrow Repeat

studyaid

Glucagon Phosphorylase

RATE LIMITING STEP

Glycogen Phosphorylase has A and B a = Active

b= inactive

Has to be phosphorylated to be active

Phosphorylase kinase (adds P) turns it "on"

Phosphorylase Kinase b also needs to be activated so needs to be phosphorylated too PKA (protein kinase A) adds P; turns it "on"

Glucagon Phosphorylase

Phosphate between compounds

Breaks α 1,4 bonds

Requires a coenzyme: PLP (derivative of B6) Phosphate form is active

Debranching enzyme

Enzyme with 2 catalytic sites

Glucan Transferase Activity

• Moves trisaccharide unit

1,6 Glycosidase Activity

Cleaves branch and leaves free glucose

Phosphoglucomutase

Phosphate glucose mutate "mutate the phosphate on the glucose"

studyaid 🔀

Phosphoglucomutase Glc-1-P -----> Glc-6-P -----> Glycolysis

 Immediate source in muscle, goes straight to glycolysis

- Remember Glucose-6phosphatase is ONLY in liver
- Only liver can provide glucose to bloodstream

 Phosphoglucomutase
 Glucose-6-Phosphatase

 Glc-1-P
 Glc-6-P

Glycogenesis

Glucose → Glycogen

Glucose: ↑ Insulin: ↑

After meal/ Fed state

Glycolysis (just learned)

Gly<u>cogen</u>esis

- Occurs in the liver (makes reserve for blood glucose) & muscles (for energy*)
- Make

Glucose

TABLE 18-1 Storage of Carbohydrate in a 70-kg Person

	Percentage of Tissue Weight	Tissue Weight	Body Content (g)
Liver glycogen	5.0	1.8 kg	90
Muscle glycogen	0.7	35 kg	245
Extracellular glucose	0.1	10 L	10

studyaid

Blood Glucose

How do we make glycogen? "Glycogenesis"

Glucokinase/Hexokinase

Add phosphate group to C6

Phosphoglucomutase

Phosphate glucose mutate "mutate the phosphate on the glucose"

UDP Glucose pyrophosphatase

- G1P \rightarrow UDP glucose
- "activates" the glucose

UDP Glucose pyrophosphorylase

Glycogenin

Protein and enzyme

Autoglucosylation: adds glucose onto itself

Putting it all together

1. Add glucose to pre-existing glycogen fragment

2. If no fragment, glycogenin makes fragment, then we elongate:

STRAIGHT CHAIN (α 1,4)

Glycogen synthase

α 1,4 glycosidic bonds

Hydroxyl group of C1 of activated glucose to the C4 of the accepting glucose chain

Can only elongate an <u>existing</u> chain RATE LIMITING STEP

ACTIVE WITHOUT phosphate*

BRANCHED CHAIN (α1,6) Branching enzyme

Branches every 8-12 glucose residues

Attaches as α 1,6 glycosidic bonds.

Increases solubility and density

Putting it all together

1. Add glucose to pre-existing glycogen fragment

2. If no fragment, glycogenin makes fragment, then we elongate:

STRAIGHT CHAIN (α 1,4)

Glycogen synthase

α 1,4 glycosidic bonds

Hydroxyl group of C1 of activated glucose to the C4 of the accepting glucose chain

Can only elongate an <u>existing</u> chain RATE LIMITING STEP

ACTIVE WITHOUT phosphate*

BRANCHED CHAIN (α1,6) Branching enzyme

Branches every 8-12 glucose residues

Attaches as α 1,6 glycosidic bonds.

Increases solubility and density

Glycogen synthase

Insulin inhibits GSK3 (glycogen synthase kinsase 3)

keeps synthase without P

Has two forms: A and B

*** tricky****

In general

A = active form

B= nonactive

BUT the unphosphorylated form is the form wanted for glycogenesis.

Glycogen Metabolism *Hormonal Regulation*

Control by phosphorylation in liver & muscle

Deficiencies

Glycogen Storage Disorders	– Vo - Po - Co V - A V - M
Glycogen GSD 0 glycogen synthase and branching enzyme GSD IV UDP-Glucose Glucose-1-P Glycolysic Glucose-1-P	@ is 7
Glucose-6-P Fructose-6-P Fructo	1,6-P

Gl	vcogen	Storage	Diseases

Туре	Deficient Enzyme
l – Von Gierke	Glucose -6- Phosphate
II - P om pe	Lysosomal α 1,4 glycosidase
III - C ori	Debranching Enzyme
IV - Anderson	Branching Enzyme
V - McArdle	Muscle Glycogen Phosphorylase
VI - Hers	Hepatic Glycogen Phosphorylase

Ø Villainous President Called And Molested Her.

www.dentaldevotee.blogspot.com

Type 1: Von Gierke Disease Glucose-6-phosphatase deficiency

Glucose can't be made

Inherited as autosomal recessive disorder (both parents have to be carriers)

Deficient in liver, kidney and intestinal mucosa

- Glycogen and fat accumulate in liver → hepatomegaly
- No glucose = hypoglycemia

Type 2: Pompe Disease Lysosomal GAA deficiency

Most severe disease

Affects muscle

Glycogen can't be broken down and accumulates - especially in heart muscle

Lysosomes begin to fill with glycogen within muscle fibers

Glycogen buildup increases, causing lysosomes to enlarge

Lysosomes rupture, releasing glycogen and waste matter into the cell

Muscle fibers become damaged and lose function Type V: McArdle's Disease Myophosphorylase Deficiency

Autosomal recessive Can't break down glycogen Deficiency of phosphorylase in <u>MUSCLE</u>

Type VI: Hers Disease Liver Phosphorylase Deficiency

Autosomal recessive (most) OR Xlinked recessive

Can't break down glycogen in LIVER

Figure 11.8

Glycogen degradation, showing some of the glycogen storage diseases (GSD). [Note: A GSD can also be caused by defects in *branching enzyme*, an enzyme of synthesis, resulting in Type IV: Andersen disease and causing death in early childhood.](*Continued on next page*.)

Туре	Deficient enzyme	Signs and symptoms
I: Von Gierke (90% of all GSDs)	Glucose-6-phosphatase	 Severe hypoglycemia → hyperlipidemia Lactic acidosis Hepatomegaly Hyperuricemia Short stature/doll-like facies/protruding abdomen
II: Pompe	Lysosomal enzyme defect (acid maltase)	 Cardiomegaly → death by age 2 Hepatomegaly Muscle weakness
III: Cori disease	Debranching enzyme	 Mild hypoglycemia and hepatomegaly
IV: Andersen disease	Branching enzyme	- Infantile hypotonia, cirrhosis and death by 2 years
V: McArdle	Muscle glycogen phosphorylase (myophosphorylase)	 Muscle cramps and weakness on exercise Myoglobinuria No rise in lactate during exercise Recovery or «second wind» after 10-15 minutes of exercise
VI: Hers	Hepatic glycogen phosphorylase	 Mild fasting hypoglycemia (compensated by gluconeogenesis) Hepatomegaly and cirrhosis

Extra Resources

