Spinal tracts

By Ola Amland

Spinal cord overview

studyaid 🔀

Motor (descending) tracts

Tracts high yield

- Does it decusate? Where?
- What anatomical structures does it run through?
- Where in internal capsule does it run?
- Where in the spinal cord does it run?
- What fasciculus? What lemniscus?
- Any nucleuses involved?

• Where does it synapse?

CORTICOSPINAL TRACT

THE MOTOR SYSTEM

studyaid

Corticospinal Tract

jaid 🔀

Descending monoamine axons (noradrenergic, serotongergic) Descending fibers from hypothalamus and brain stem to spinal cord

Corticobulbar

- Innervates brainstem LMN
- <u>Genu</u> of internal capsule
- Provides both ipsi <u>and</u> contralateral innervation except for lower half of the facial nucleus (contralateral only)
- CN V, VII, IX, X, XI, XII

SPINAL CORD	MEDULLA	PONS	MIDBRAIN	DIENCEPHALON	TELENCEPHALON
Lower Motor Neurons	XII (X IX n. ambiguus)	VII V motor			
Corticobulbar Tract					
	$\langle \langle \langle \rangle$	\prec \prec	Cerebral Peduncle	Genu Internal Capsule	1°and 2° Motor Cortex Lateral Portion
	11	11			

Muscles of facial expression

Facial nerve lesion:
Ipsilateral upper and lower muscle paralysis

 Corticobulbar tract lesion:
Ipsilateral: nothing
Contralateral: Lower facial muscles weakness

Facial nerve lesion

Corticobulbar tract lesion

• Usually from a stroke

Facial Weakness

Lower motor neuron (Bulbar palsy)

- Bell palsy (CN VII lesion)
- Weakness of *ipsilateral upper and lower face*
- Usually due to a viral infection of CN VII

Upper motor neuron (Pseudobulbar palsy)

- Weakness of *contralateral lower face*
- Usually due to a stroke in the contralateral motor cortex or genu of the internal capsule

Upper motor neuron lesion vs lower motor neuron lesion

UMN:

- Weakness (paresis)
- Spasticity (increased muscle tone)
- Hyperreflexia (exaggerated reflexes)
- Positive Babinski sign
- Clonus (involuntary muscle contractions)
- No muscle atrophy (except in chronic cases)
- Muscle strength decreased, but muscle bulk generally preserved

LMN:

- Flaccid paralysis (weakness)
- Hypotonia (decreased muscle tone)
- Hyporeflexia or areflexia (absent reflexes)
- Severe muscle atrophy (muscle wasting)
- *Fasciculations* (muscle twitches)

Lower Motor Neurons

NUCLEUS	NERVE	TARGET
Ventral horn of SC	Spinal nerves	Limb and trunk musculature
Oculomotor	CN III	Extraocular muscles: SR, IR, MR, IO, Levator palpebrae
Trochlear	CN IV	Superior oblique muscle
Abducens	CN VI	Lateral rectus muscle
Trigeminal motor	CN V	Muscles of mastication
Facial	CN VII	Muscles of facial expression
Ambiguus	CN IX, X	Pharyngeal and laryngeal muscles
Spinal accessory	CN XI	Sternocleidomastoid and trapezius muscles
Hypoglossal	CN XII	Tongue musculature

SENSORY TRACTS

Sensory (ascending) tracts

SENSORY SYSTEM – GENERAL SCHEME

Epicritic (dorsal column)

- Fine touch, position sense, vibration
- Dorsal column
- Medial lemniscus in brain stem
- Nucleus VPL in thalamus
- Postcentral gyrus (medial)
- Also called medial lemniscus dorsal column pathway

THE SENSORY SYSTEM

Protopathic (spinothalamic)

- Pain (fast and slow) and temperature
- Ventro-lateral funiculus of SC
- Spinal lemniscus in brain stem
- Nucleus VPL of thalamus
- Post central gyrus (medial)
- Also called the spinothalamic pathway

Slow pain: C fibers

Fast pain: Alpha fibers

THE SENSORY SYSTEM

THE SENSORY SYSTEM

Protopathic Somatosensory System

Trigeminal sensory system

THE SENSORY SYSTEM

Other tracts

Taste

CRANIAL NERVE	GANGLION	REGION OF INNERVATION
VII	Geniculate	Anterior 2/3 of tongue
IX	Petrosal	Posterior 1/3 of tongue
X	Nodose	Epiglottis

THE SENSORY SYSTEM

Auditory

Primary auditory cortex

- Medial geniculate
- Inferior colliculus
- Superior olive
- Cochlear nucleus

Vestibular system

Visual Field Defects

Visual Field Defects

LESION	VISUAL FIELD DEFECT
Optic nerve	Ipsilateral monocular blindness
Optic chiasm	Bitemporal hemianopsia
Optic tract (very rare)	Contralateral homonymous hemianopsia
Lateral geniculate nucleus	Contralateral homonymous hemianopsia
Temporal optic radiations	Contralateral superior quadrantanopsia
(Meyer's loop)	(pie-in-the-sky defect)
Parietal optic radiations	Contralateral inferior quadrantanopsia (pie-in-the-floor defect)
Occipital cortex	Contralateral homonymous hemianopsia

Clinical relevance

Brown-Sequard Syndrome

Brown-Séquard Syndrome Effects

- Ipsilateral (Same Side) Effects:
 - Motor paralysis/weakness (hemiparesis) Corticospinal tract
 - Spasticity Upper motor neuron involvement
 - Loss of fine touch, proprioception, vibration Dorsal column
- Contralateral (Opposite Side) Effects:
 - Loss of pain, temperature, crude touch Spinothalamic tract

Stroke

- A patient presents to the emergency department with signs of a stroke
- Symptoms: Acute onset of weakness in upper limbs>lower limbs
- He is sent for a CT to exclude hemorrhage

Can we predict the artery occluded?

Lateral Brain

Medial Brain

Homunculus

Occlusion of the MCA

