Nucleotide Metabolism

Purines and pyrimidines By: Adriana Nudga

Overview

□ Ribonucleotide synthesis

Purine synthesis/degradation: "de novo" and salvage pathwayPyrimidine synthesis/degeneration

Deoxyribonucleotide synthesis

First a quick review!

How to remember them

"TUC-TUC around the pyramids"

Functions:

studyaid

- DNA and RNA
- Essential coenzymes:
 - Coenzyme A
 - FAD[H₂]
 - NAD[H]/NADP[H]
 - cAMP/cGMP
- Energy carriers:
 - ATP
 - GTP

Step one, the beginning. Creation of PRPP

Important, PRPP is needed for the synthesis of both purines and pyrimidines.

- PRPP is Synthesized from ATP and ribose 5-phosphate
- Catalyzed by PRPP synthetase
- Key substrate in <u>both</u> pyrimidine and purine synthesis

Purine synthesis

Adenine

Guanine

"de novo"

This pathway creates nucleotides from scratch.

QUICK OVERVIEW

" de novo" synthesis is the creation of IMP then IMP turns to Adenine or Guanine.

Rate limiting step is PRPP aminotransferase.

Remember GAG for glutamine, aspartate, and glycine

Synthesis of IMP for purines

10 step reaction from PRPP to IMP Used :

• 1 PRPP

• 2 glutamine

• 1 Glycine

1 aspartate

• 2 N¹⁰-formyl-tetrahydrofolate

• 1 HCO₃[CO₂]

• 6 ATP

Step 1: rate limiting step

GOAL!

The 10 step process

- 1. Glutamine:phosphoribosyl pyrophosphate amindotransferase
- 2. GAR synthetase
- 3. Formyltransferase
- 4. Synthetase
- 5. Synthetase
- 6. Carboxylase
- 7. Synthetase
- 8. Adenylsuccinate lyase
- 9. Fromyltrransferase
- 10. Synthase

Regulation

*negative feedback inhibition

Regulation

*negative feedback inhibition

Clinical correlation

6-Mercaptopurine

- Immunosuppressive drug
- Inhibits PRPP amidotransferase

Clinical correlation

Mycophenolic acid

- Immunosuppressive drug
- Inhibits IMP dehydrogenase
- Resulting in \downarrow GMP production $\rightarrow \downarrow$ production of T and B cells
- Clinical use: prevent graft rejection

Purine synthesis

Salvage pathway

reuse of the performed base resulting from normal cell turnover, or from diet

QUICK OVERVIEW

Salvage pathway: end products are used to create AMP, IMP, GMP

IMPORTANT ENZYMES: - Adenine phosphorybosyltransferase (APRT)

-Hypoxanthine-guanine phosphorybosyltransferase (HGPRT)

The difference of adenine vs adenosine and guanine vs guanosine is that the "–osine" is attached to the ribose sugar. This is important to distinguish when we start talking about the salvage pathway.

Purine degradation

QUICK OVERVIEW

- Degradation pathways:
 - IMP -> inosine -> uric acid
 - AMP -> IMP-> inosine -> uric acid
 - Adenosine -> inosine -> uric acid
 - GMP -> guanine -> xanthine -> uric acid
- Majority of URIC ACID is excreted in the urine.
- Purines formed in "de novo" are degraded in the liver. Then free bases are sent to peripheral tissue to join salvage pathway.

During degeneration of nucleotides Free purine and pyrimidine bases (adenine, guanine,) are released into the cell and are typically transported intercellularly across membranes and salvaged to create more nucleotides via nucleotide salvage. For example, adenine + PRPP --> AMP + PPi.

IMP -> inosine -> uric acid

GMP -> guanine -> xanthine -> uric acid

Formation of URIC ACID

```
AMP -> IMP-> inosine -> uric acid
```

```
Adenosine -> inosine -> uric acid
```

The anime group is removed from AMP to form IMP by AMP Deaminase. Or the amine groups is removed from adenosine to form inosine by adenosine deaminase.

Clinical correlation

Gout

High levels of uric acid in blood (hyperuricemia) -> deposits of monosodium urate(MSU) crystals in joints -> inflamatory response

- Hyperuricemia results primarily from the UNDERexcretion of uric acid.
- OVERproduction of uric acid is rare.

Allopurinol (drug)

- Inhibits Xanthine oxidase
- Gout treatment
- Hypoxanthine analogue
- Inhibits uric acid synthesis
 studuoi

Clinical correlation

Lesch-Nyhan syndrome

Salvage pathway

- HGPRT deficiency
- Excess uric acid production and de novo purine synthesis

Hyperuricemia Gout Pissed off (aggression, self mutilation) Retardation DysTonia

Adenosine deaminase deficie

- ADA deficiency
- One of the major causes of autosomal recessive SCID (severe combined immunedeficiency)
- Excess dATP, resulting in lymphotoxicity

If HGPRT is no functioning then Hypoxanthine and guanine will rise thus pushing for the formation of uric acid

"de novo"

QUICK OVERVIEW

- The synthesis of any pyrimidine nucleotide begins with the formation of uridine.
- Pyrmidines can be salvaged, however, their high solubility makes pyrimidine salvage less clinically significant than purines.

Used: 1 PRPP 1 Glutamine 1 Aspartate 1 HCO₃ (CO₂) 1 NAD⁺ 4 ATP

Carbamoyl phosphate synthetase II

	CPS-I	CPS-II
Location	Mitochondria	Cytosol
Pathway	Urea cycle	Pyrimidine "de novo" synthesis
Regulation	+ N-acetylglutamate	+ PRPP X UTP
Source of nitrogen	ammonia	glutamine

Step 1 creating carbamoyl phosphate

<u>Gln = glutamine</u> <u>Glu = glutamate</u>

Step 2: Aspartate transcarbamoylase

Step 3: Dehydratation

Step 4: Oxidation-reduction reaction

Step 5: adding PRPP

Step 6: finally formation of UMP!!!

Quick overview

 The convertion of uridine to cytidine happens only when UMP is converted to UTP. Only then can CTP be made.

Nucleotide triphosphate formation

$NMP \rightarrow NTP$

- Phosphorylation of NMP to NDP then TTP
- Kinase activity
- Usage: 2 ATP
- The same goes for both purines and pyrimidines

Gin + H₂O

 $UTP \rightarrow CTP$

Clinical correlation

Ornithine transcarbamoylase deficiency

- Carbamoyl phosphate availability
- Carbamoyl phosphate leaks out into the cytoplasm
- ↑ pyrimidine synthesis
- Result: Orotic aciduria
- IMPORTANT! NO
- megaloblastic anemia

Clinical correlation

UMP Synthase deficiency

- ↑ Carbamoyl phosphate availability
- ↑ pyrimidine synthesis
- Result: Orotic aciduria
- IMPORTANT! NO hyperamm

Quick overview

- dUMP is converted to dTMP by thymidylate synthase.
- It receives a methyl group from N⁵,N¹⁰-methylene tetrahyfrofolate
- Important pathways to note:
 - One Carbon Metabolism
 - Folate cycle

Folic acid (vitamin B₉)

- THF is the active form of folic acid
- Requires 2 NADPH
- Essential enzyme: Dihydrofolate reductase
- A carrier of one-carbon units

dUMP to dTMP

Clinical correlations cancer drugs

Methotraxate (MTX)

5 fluorouracil (5-FU)

Ribose to deoxyribose

What is the difference?

Essential enzyme: *Ribonucleotide reductase*

Regulation:

+ ATP

x dATP

x Hydroxyurea anticancer drug Inhibits ribonucleotide reductase

GOOD LUCK !!

