Nucleotide Metabolism

By Jessica Shuster

Overview of Nucleotides

- Components
 - Nitrogenous base (purine/pyrimidine)
 - Pentose sugar (ribose/deoxyribose)
 - Phosphate group(s)
- Functions
 - $\odot~$ Building blocks of DNA/RNA
 - Coenzymes (NAD+, FAD)
 - Energy transfer (ATP, GTP)
 - Second messengers (cAMP, cGMP)
 - Allosteric regulators (ATP, ADP, AMP)

Structure of Purines and Pyrimidines

Guanine (G)

Pure As Gold

CUT the **pyr**amid

De Novo Purine Biosynthesis

- Uses **amino acids** as precursors to produce nucleotides
- Occurs primarily in the liver
- Requires at least six high-energy bonds (ATP) per purine molecule synthesized
- Goal is to create inosine monophosphate (IMP), and IMP turns into adenine or guanine
- 11 step process !

Sources of Atoms in Purine Rings

• Amino acids necessary for **pur**ine synthesis (cats **pur**r until they **GAG**):

studya

- **G**lycine
- Aspartate
- **Glutamine**

Step 1: Creating PRPP

- 5-Phosphoribosyl-1-pyrophosphate (PRPP) is an activated form of ribose used to initiate purine biosynthesis
- Synthesized from ribose 5-phosphate (produced from glucose via the pentose phosphate pathway) and ATP by the enzyme PRPP synthetase
- PRPP is used in **both** purine and pyrimidine biosynthesis !

Step 2: Rate Limiting Step !

- PRPP reacts with glutamine to form
 5'-phosphoribosyl-1'-amine
- Catalyzed by glutamine phosphoribosylamidotransferase (GPAT)
 - This enzyme is highly regulated, making this step the committed/rate limiting step of purine biosynthesis

9 more steps to get to IMP!

IMP to AMP

Formation of Adenylosuccinate

- Aspartate is added to IMP
- Enzyme: Adenylosuccinate synthetase
- Requires GTP as the energy source

Formation of AMP

- Fumarate is released from adenylosuccinate
- Enzyme: Adenylosuccinate lyase

IMP to GMP

Formation of XMP

- The hypoxanthine base of IMP is oxidized to xanthine
- Enzyme: IMP
 dehydrogenase

Conversion of XMP to GMP

- Glutamine donates an amide nitrogen to XMP
- Enzyme: GMP synthetase
- Requires ATP for energy

Purine Synthesis Regulation

Regulation of PRPP synthetase

• Inhibitors: GDP (oxypurine), ADP (aminopurine)

Regulation of GPAT

- Inhibitors: GMP, AMP
- Activators: PRPP, glutamine

Regulation of IMP dehydrogenase

- Inhibited by GMP
- Activated by high ATP

Regulation of Adenylosuccinate synthetase

- Inhibited by AMP
- Activated by high GTP

Purine Salvage Pathways

- Allows free bases, nucleosides, and nucleotides to be easily interconverted
- Requires significantly less energy compared to de novo synthesis
- Major form of nucleotide generation for specific cell types like lymphocytes
- Key enzymes
 - o APRT
 - o **HGPRT**
 - Adenosine deaminase (ADA)
 - Purine nucleoside phosphorylase (PNP)

Lesch-Nyhan Syndrome

- Defective purine salvage
- HGPRT deficiency
- **Decreased** GMP and IMP formation
- Compensatory increase in purine synthesis (increased GPAT) leads to excess uric acid production!

HGPRT:

- Hyperuricemia
- Gout
- Pissed off (aggression, selfmutilation)
- Red/orange crystals in urine
- Tense muscles (dystonia)

Adenosine Deaminase (ADA) Deficiency

- **Deoxyadenosine (dA)** and its toxic derivatives accumulate in blood and immune cells
- Elevated dATP levels inhibit ribonucleotide reductase, impairing DNA synthesis
- Severe dysfunction of both T cells and B cells
- Causes Severe Combined Immunodeficiency (SCID):
 - Increased susceptibility to infections
 - Failure to thrive and developmental delays

PNP Deficiency

- Inosine and guanosine accumulation
- Toxic effects of accumulated nucleosides selectively impair Tcell function, while B-cell function remains near normal
- Increased susceptibility to infections due to loss of T-cell function

studyai

Purine Degradation

Degradation pathways:

- AMP \rightarrow IMP \rightarrow inosine \rightarrow uric acid
- GMP \rightarrow guanine \rightarrow xanthine \rightarrow uric acid

most of **uric acid** is excreted in urine !

Gout

- Increased levels of **uric acid** in blood (hyperuricemia)
- Due to overproduction (10%) or underexcretion (90%) of uric acid
- Deposits of monosodium urate (MSU) crystals in joints causing an inflammatory response
- Treated with Allopurinol (hypoxanthine analogue), which inhibits Xanthine oxidase → decreased uric acid production

De Novo Pyrimidine Biosynthesis

- Pyrimidine bases are synthesized first and then attached to ribose-5-phosphate from PRPP
- Entire pathway occurs in the cytosol
- **CPSII** is the key regulatory enzyme
- Synthesis of any pyrimidine nucleotide begins with the formation of uridine monophosphate (UMP)

Sources of Atoms in a Pyrimidine Ring

Step 1: Formation of Carbamoyl Phosphate

$$2 \text{ ATP} + \text{HCO}_{3} + \text{NH}_{3} \xrightarrow{\text{Glutamine}} adds \text{ NH}_{3}$$

$$2 \text{ ADP} + P_{i} \xrightarrow{\text{CPS} II} + P_{i} \xrightarrow{\text{CPS} II} + P_{i} \xrightarrow{\text{CPS} II} + P_{i} \xrightarrow{\text{CPS} II} \xrightarrow{\text{CPS} II} + P_{i} \xrightarrow{\text{CPS} II} \xrightarrow$$

- Glutamine + Bicarbonate + ATP \rightarrow Carbamoyl Phosphate
- Enzyme: Carbamoyl Phosphate Synthetase II (CPSII)
- Occurs in the cytosol (unlike CPSI in the mitochondria)

Step 2: Addition of Aspartate

Step 3: Ring Closure

Step 4: Oxidation to Orotic Acid

Step 5: Addition of PRPP

Step 6: Formation of UMP !

Conversion of UMP to CTP

Phosphorylation of UMP to UTP

• UMP (uridine monophosphate) is phosphorylated to UTP (uridine triphosphate) through nucleotide kinases

Synthesis of CTP

- An **amine group** from **glutamine** is added to UTP forming CTP (cytidine triphosphate)
- Enzyme: CTP synthetase

Pyrimidine Synthesis Regulation

Regulated Step

• CPSII is the key regulatory enzyme in pyrimidine synthesis.

Allosteric Regulation

- Inhibited by UTP (high pyrimidine levels)
- Activated by **PRPP** (low pyrimidine levels)

Pyrimidine Salvage Pathways

Pyrimidine Nucleoside Phosphorylase

- Converts pyrimidine bases to nucleoside monophosphates
- Preference:
 - Uracil is the preferred substrate, and this enzyme is sometimes called uridine phosphorylase
 - **Cytosine** is also utilized, though with lower efficiency
 - **Thymine** is poorly utilized, as the enzyme has very low affinity for it

Thymine Phosphorylase

- Converts thymine to a deoxyribonucleoside (adds a deoxyribose residue)
- Has a high affinity for thymine, facilitating its salvage into the nucleotide pool

Pyrimidine Degradation

- Pyrimidines are broken down into soluble, non-problematic end products
- Degradation products, such as Balanine and B-aminoisobutyrate, are safely excreted or metabolized
- Unlike purines, pyrimidine degradation does not pose health risks like gout

Production of Deoxyribonucleotides

- For DNA synthesis, ribose must be reduced to deoxyribose at the diphosphate level
- Enzyme: Ribonucleotide reductase
- Cofactor: Thioredoxin
- Deoxyribonucleoside diphosphates (dNDPs) are produced, which are further phosphorylated to triphosphates (dNTPs) for DNA synthesis
- ATP (+) and dATP (-) regulate activity

