Lipid Metabolism

By Inga Borchgrevink

Outline 1

Types of lipids

Types	Build from
Fatty acids	
Acylglyserol	Glyserol + FA
Phosphoacylglyserol	Glyserol + FA + P
Sphingolipids	Sphingosine
Steroids	Steroid nucleus

Sphingolipids Single sugar residue Oligosaccharide residue HO OH HO OH HO···· HO Sphingosine backbone OH -OH , OH H₃N⁺ NH-NH-NH NH-NH OH ···OH ---OH **O**= --OH 'OH OH OH O =O =0== $H_2\dot{N}$ 1011 ŌН Phosphoethanolamine Fatty acid Phosphocholine ОН group residue group OH. HO~ OH HO Sialic acid , OH OH ŌΗ ÓН Sphingosine A Sphingomyelin A Sphingomyelin A Cerebroside A Ganglioside A Ceramide

Q: Which of the following is needed for the synthesis of all three compounds: triacylglycerol, phosohatidyl and sphingomyelin

a) Diacylglycerol
b) Phosphatidic acid
c) Phosphocholine
d) Glycerol-3-phosphate
e) Acyl-CoA

ldyl = glyserol + 2FA

Fat synthesis (de novo)

Mitochondria **Degreadation of fatty acids**

only! **Transfer Fatty acid into mitochondria**

Fatty Acids NOT used by: RBC's: Glycolysis only (no

mitochondria

Brain: Glucose & Ketones

β-oxidation spiral

B-oxidation spiral

Degradation

Fatty acid + CoA

$FADH_2 = 1, 5 ATP$ NADH = 2, 5 ATPAcetyl - CoA = 10 ATP

Energy output

- Number of rounds = $\frac{C-2}{2}$
- 16C \rightarrow 7 rounds of b-oxidation
 - 7 $FADH_2 \rightarrow 10,5 ATP$
 - $7 NADH_2 \rightarrow 17,5 ATP$
 - $8 Acetyl CoA \rightarrow 80 ATP$
 - → 108 ATP
 - 108 ATP 2 ATP (for activation)
 - \rightarrow <u>106 ATP netto</u>

STUO

Balace between synthesis and degradation of FA

 Malonyl-CoA inhibits CPT1 meaning Fatty Acid synthesis and degradation does <u>not</u> happen simultaneously

What about Odd Chain Fatty Acids? netoquesis

- B-oxidation until propionyl CoA (3C)
- Vit B12 deficiency causes buildup of Methylmalonyl-CoA
- End product Succinyl-CoA \rightarrow TCA cycle

TAG synthesis/Lipogenesis

- Glyserol-3-Phosphate → TAG
- Adipose tissue lack Glyserol kinase

Synthesis of ketone

HMG-CoA synthase = Rate limiting step

HMG-CoA lyase

e *mitochondria* Acetyl CoA from fatty acid oxidation

HMG-CoA

Ketone bodies

studyaid

When are Ketones produced?

- Prolonged starvation & Diabetic Ketoacidosis = oxaloacetate depleted (TCA)
- Chronic alcohol overuse = NADH excess
- Both of the above processes lead to acetyl-CoA buildup which is shunted to ketone synthesis

Oxidation of ketones $\downarrow_{CH_{4}-\dot{C}-CH_{2}-\dot{C}_{0}-}$ Broken down in $\downarrow_{USCIe and brainersy}$

Succinyl CoA: acetoacetate CoA transferase:

ABSENT IN LIVER

Depend on an active TCA cycle to provide succinyl CoA

Get more energy (NADH) from <u>hydroxybutyrate</u> then from <u>acetoacetate</u>

> Energy output: 2Acetyl CoA → 20ATP 1NADH → 2,5 ATP

Cholesterol synteses

- Start from Acetyl CoA
- Use NADPH and ATP

HMG-CoA reductase = Rate Limiting Step

- Inhibited by statin drugs and cholesterol + mevalonate buildup
- Insulin Induces
- Glucagon Inhibits

Fates of cholesterol delivered to tissue by

In VLDLs

Membrane structure Production of steroid hormones Production of vit D

Cholesterol → bile acid/salts Made in live ~~~

7a-hydroxylase = Rate limiting step Bile acids inhibit

7a-hydroxylase

Don't mix these up!

HMG-CoA Lyase = Ketone production

HMG-CoA Reductase = Cholesterol synthesis

Cytosol \rightarrow Mitochondria (β -oxidation spiral)

FA degradation

Fasting

Break©

Outline 2

What are lipoproteins?

- FFA are insoluble in blood > binds to albumin <u>Lipoproteins = transporters</u> for hydrophobic lipids in the blood •
 - Chylomicrons

Cholestero

- Very low-density lipoproteins (VLDL)
- Intermediate-density lipoprotein (IDL)
- Low density lipoproteins (LDL)

 High density lipoprotein (HDL) (lowest TAG, high cholesterol) = "good cholesterol" studuaic

LDL - < 100 MG/DL

Figure I-15-5. Overview of Lipoprotein Metabolism

Fat transport

<u>Chylomicrons:</u> Bind exogenous dietary fat.
C-II activates LP lipase
B-48 for unique identification
E for entry to liver

VLDL: Newly synthesized endogenous triglycerides from liver to tissues.

LDL: Cholesterol to tissues B-100 binds LDL receptor

HDL: Cholesterol from tissues to liver

Apolipoproteins

Only on chylomicrons		Apolipoprotein	Function	
Deliverd by HDL		Аро В-48	«guide» chylomicrons	
	4	Apo CII	Activates LPL (TAG → glyserol + FA)	
		Apo E	Entry into liver	
		Аро В100	Entry into liver and other tissue (LDL-Receptors)	
		Apo A1	Activates LCAT (Ch →ChE)	
2	Only	on HDL	st	

Lipoprotein	Functions	Apoproteins	Functions
Chylomicrons	Transport dietary triglyceride and cholesterol from intestine to tissues	apoB-48 apoC-II apoE	Secreted by intestine Activates lipoprotein lipase Uptake of remnants by the liver
VLDL	Transports triglyceride from liver to tissues	apoB-100 apoC-II apoE	Secreted by liver Activates lipoprotein lipase Uptake of remnants (IDL) by liver
IDL (VLDL remnants)	Picks up cholesterol from HDL to become LDL Picked up by liver	apoE apoB-100	Uptake by liver
LDL	Delivers cholesterol into cells	apoB-100	Uptake by liver and other tissues via LDL receptor (apoB-100 receptor)
HDL	Picks up cholesterol accumulating in blood vessels Delivers cholesterol to liver and steroidogenic tissues via scavenger receptor (SR-B1) Shuttles apoC-II and apoE in blood	apoA-1	Activates lecithin cholesterol acyltransferase (LCAT) to pro- duce cholesterol esters

Table I-15-1. Classes of Lipoproteins and Important Apoproteins

Diseases

• **Type 1 hyperlipoproteinemia** Mutation of apoCII (activates LPL) • Familial hypercholesteremia Mutation of LDL-receptor

→ Increased TAG in serum

→ increased LDL in serum

Lipoprotein lipase (LPL)

- On capillary endothelial cells, OUTSIDE adipose and muscle cells
- TAG \rightarrow glyserol + 3FFA
 - Chylomicrones \rightarrow chylomicrone remnent
 - VLDL \rightarrow IDL
- Adipose LPL has HIGHER Km than muscle LPL
- Insulin stimulate ONLY adipose LPL

Eicosanoids

- 20 carbon FA
- Prostaglandins, thromboxanes, and leukotrienes
 - Cell signaling
 - Inflammatory response
- Precursor = Arachidonic acid

Where does Arachidonic Acid come from?

- <u>Elongation + Desaturation of</u> <u>Linoleic acid leads to</u> <u>Arachidonic Acid production</u>
 - Linoleic acid comes from diet!!

Membrane phospholipid is cleaved by **Phospholipase** A₂ to extract **Arachidonic acid**

<u>Steroids inhibit all</u> products (LT, TX, PG)

NSAIDs only inhibit PG and TX formation

Naming fatty acids

