Glycolysis & Pentose Phosphate Pathway

Karolina Orocz

studyaid 🔀

GLYCOLYSIS

When glycolysis realises it produces 34 ATP molecules less than oxidative phosporylation

What is glycolysis?

When our body breaks down glucose into pyruvate

Why do we love pyruvate?

Pyruvate can be turned into substrates like...

- ★ Acetyl-CoA
 - for Krebs cycle
 - via pyruvate dehydrogenase enzyme
 - complex (PDC)
- ★ Oxaloacetate
 - for gluconeogenesis
 - via pyruvate carboxylase
- Or give off byproducts like...
 - Lactic acid
 - happens in cells without mitochondria or that lack of oxygen
 - via lactate dehydrogenase
 - Ethanol
 - happens in yeast & bacteria
 - via pyruvaté carboxylase

When & where does glycolysis occur?

When:

Where:

- You just ate
- You need ATP *and* have sufficient glucose in your body
 - Example: working out
 - No glucose? Ketolysis!
- Insulin is circulating in the body
 - During the "Fed" state
 - Especially affects liver

- Most cells except RBCs!
 - RBCs do Pentose phosphate pathway (PPP)
- Cell cytosol

Let's start!

Step 0: How do we get glucose into the cell?

Glucose Transporters! (GLUTs)

 \star

Enzyme:	Hexokinase	Glucokinase
Where:	Most tissues	Liver
Km	Low Km High affinity towards glucose – converts glucose at low concentrations	High Km Low affinity towards glucose – converts glucose only at high concentrations
Effect of G6P	Negative feedback	None
Effect of insulin	None	Stimulated

Step 2:

★ F6P: Fructose-6-phosphate

Step 3: MAIN RATE-LIMITING STEP F26 H, ATP, Citrate RY

★ F1,6BP: Fructose 1, 6 bisphosphate

RREVERSIBLE REACTION

Step 6:

★ 3PG: 3 Phosphoglycerate

★ PEP: Phosphoenolpyruvate

IRREVERSIBLE REACTION

Clinical correlation: Myocardial infarction

Normally the heart needs lots of ATP & O2 to run!

- **95%** of ATP: mitochondrial oxidative phosphorylation
 - aerobic process: needs O2 to run!
- **5%** of ATP: glycolysis
 - \circ anaerobic

When myocardial infarction happens, there is not enough O2 getting to the heart!

- No O2 ⇒ mitochondrial oxidative phosphorylation can't happen
 MUCH LESS ATP MADE
- Glycolysis takes over: GOOD AT FIRST, THEN A PROBLEM
 - Doesn't make a lot of ATP
 - Anaerobic conditions \Rightarrow converts pyruvate \rightarrow lactic acid & H+
 - Damages the heart even further!
 - Buildup of these byproducts start to inhibit glycolysis from happening ⇒ even less ATP made

Heart Attack

Treatment? Reprefuse the heart with O2 & good circulation ASAP!

The problem...

When reprefuse the heart, fatty acid oxidation (FA breakdown into acetyl-CoA) takes overs

- Decreases Kreb's cycle & electron transport chain activity
- Keeps glycolysis activity high
- High levels of H+ & lactic acid remain ⇒ decreased cardiac efficiency & more damage

Glycolysis high yield Recaps!

- Remember which enzymes have *irreversible* reactions:
 - Hexokinase/Glucokinase
 - Phosphofructokinase-1
 - Pyruvate Kinase
 - PDC
- Remember what molecules activate and inhibit...
 - Hexokinase/Glucokinase
 - Phosphofructokinase-1
 - Pyruvate Kinase
 - PDC
- INSULIN is the glycolysis hormone
- Glycolysis NET profit: (not including pyruvate -> Acetyl-CoA conversion)
 - 2 pyruvate
 - 2 ATP
 - 2 NADH

Pentose Phosphate Pathway (PPP)

What is PPP?

An alternative way to break down glucose;

Along the way you make NADPH, and at the end you make Ribose-5-Phosphate

When & where does PPP occur?

When:

- Need NADPH to power:
 - Cholesterol synthesis
 - Fatty acid synthesis
 - Riddance of ROS via glutathione
- Need **Ribose-5-Phosphate** to help synthesize:
 - DNA/RNA/ATP
 - NAD+/FAD/CoA
- Insulin is circulating in the body

Where:

- Red blood cells
 - Cells without mitochondria
- Liver cells
- Cell cytosol (like glycolysis)

PPP is divided into...

1) Oxidative phase

- a) Oxidation: when you break down a molecule and lose at least one electrons
- b) Irreversible
- c) Aerobic (O2)
- d) Makes NADPH & Ribose-5-P

2) Non-Oxidative phase

- a) Reversible
- b) Anaerobic (No O2)
- c) ONLY makes Ribose-5-P

Let's start!

Step 0: Incoming glucose & glycolysis again?

Step 1: RATE LIMITING STEP

★ 6PGLactone: 6-phosphoglucolactone

OXIDATIVE

Step 2: 6 P.G.Lactone 6PG luconate studyaid 🔀

★ 6PGluconate: 6-phosphogluconate

OXIDATIVE

Step 4:

★ X5P: Xylulose-5-phosphate

Step 5:

★ Gly3P: Glyceraldehyde-3-phosphate

Step 7:

FGP (Stelehose) E4P transletehose F4P transletehose +Vit B1 (TPP)

Clinical correlation: Glucose-6-phosphate dehydrogenase (G6PD) deficiency

Normal Conditions: In a RBC, G6P Dehydrogenase helps Glutathione Reductase do its job by donating a H+ from NADPH; Reduced glutathione helps convert H2O2, a damaging reactive oxygen species, into a harmless water molecule

G6P dehydrogenase deficiency:

- No NADPH to reduce glutathione
- No reduced glutathione to convert H2O2 into water
- H2O2 buildup = RBC gets damaged
- Hemolytic anemia

PPP High Yield Recaps!

- Remember where and when PPP occurs
- Remember the differences between the oxidative and non-oxidative stage
- Remember the rate-limiting step
- Remember that the non-oxidative stage can make substrates for glycolysis & gluconeogenesis
- Remember about G6PD deficiency
- PPP NET profit:
 - 2 NADPH
 - 1 CO2
 - 1 Ribose-5-phosphate

Wooclap

Go to wooclap.com

Enter the event code in the top banner

