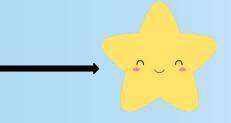
Glycolysis & Pentose Phosphate Pathway

Karolina Orocz

Glycolysis

When glycolysis realises it produces **30** ATP molecules less than oxidative phosporylation



Glycolysis

Breaking down glucose into pyruvate

Pyruvate conversions

Substrates:

- Acetyl-CoA: For Krebs cycle
- Oxaloacetate: For gluconeogenesis

Byproducts:

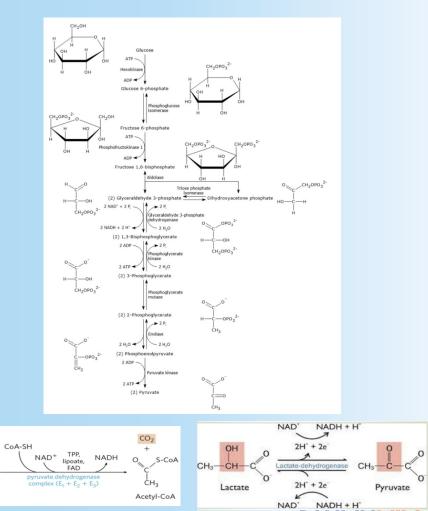
- Lactic acid: Produced during anaerobic conditions
- Ethanol: Produced in yeast & bacteria

When glycolysis occurs

- "Fed" state: When you have just eaten and have elevated glucose in the blood
 - Insulin: Fed state hormone, signals glucose to go into cells
- When in need of ATP
- Under aerobic & anaerobic conditions

Where glycolysis occurs

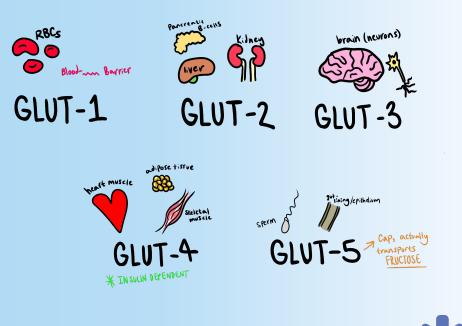
- Molecularly: Cell cytosol
- All living cells, *especially* RBCs!
 - RBCs do not have mitochondria to power Kreb's cycle & oxidative phosphorylation to make ATP


Let's start!

0. 0

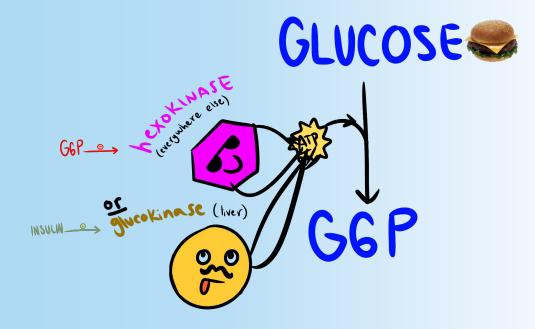
 $\dot{c}=0$

ĊH₃


Pyruvate

2100

Glucose transporters (GLUTs)


- GLUT: Transport glucose from extracellular space to intracellular space
- Respective tissues have their respective glucose transporters
- GLUT4: upregulated when insulin is present
- GLUT5: transports fructose, not glucose

studu

Step 1:

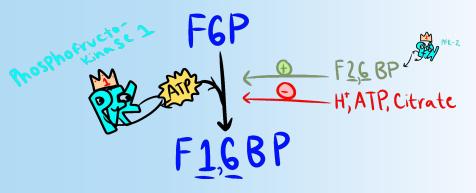
- Converting glucose into glucose-6-phosphate (G6P) allows glucose to be trapped inside the cell
- Irreversible reaction

Hexokinase vs Glucokinase:

Enzyme:	Hexokinase	Glucokinase
Where:	Most tissues	Liver
Km	Low Km High affinity towards glucose – converts glucose at low concentrations	High Km Low affinity towards glucose – converts glucose only at high concentrations
Effect of G6P	Negative feedback	None
Effect of insulin	None	Stimulated

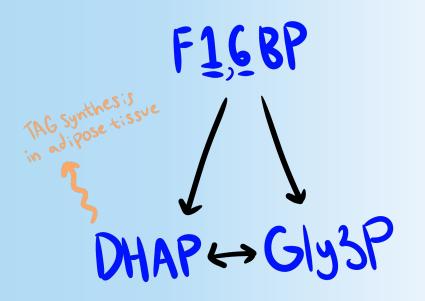
Step 2:

- G6P: Glucose-6-phosphate
- F6P: Fructose-6-phosphate
- Rx done by G6P isomerase

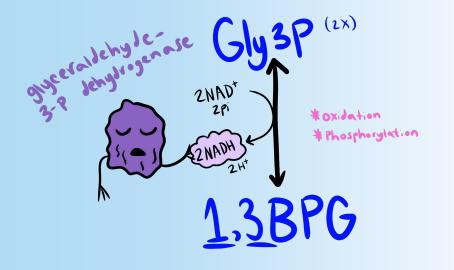


Step 3:

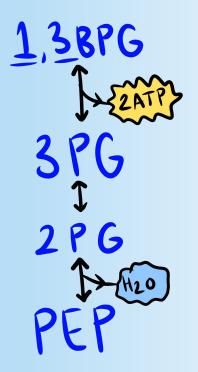
- Rate-limiting step: Determines how fast/how much glycolysis occurs
- Irreversible reaction
- F6P: Fructose-6-phosphate
- F1,6BP: Fructose-1,6-bisphosphate
- PFK-2: Makes


fructose-2,6-bisphosphate, which activates PFK-1

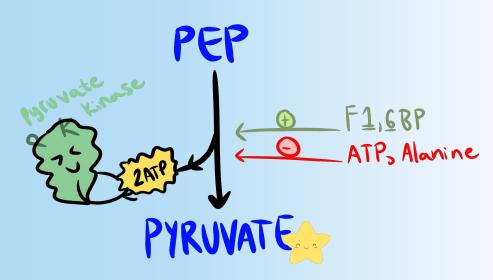
Step 4:


- Irreversible reaction
- DHAP: Dihydroxyacetone phosphate
 - Involved in phospholipid synthesis
- Gly3P: Glyceraldehyde 3-phosphate
 - Need 2 Gly3P molecules to continue with glycolysis

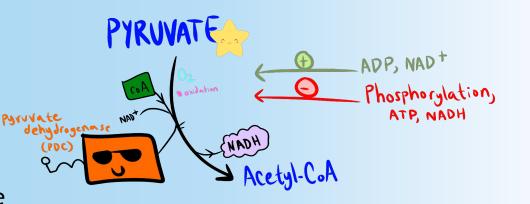
Step 5:


- 1,3BPG: 1,3-bisphosphoglyceric acid
- Gly3P dehydrogenase:
 - Its reaction involves oxidation and phosphorylation of Gly3P

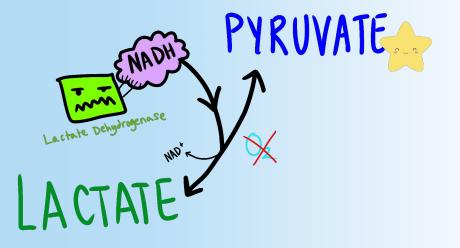
Step 6,7, & 8:

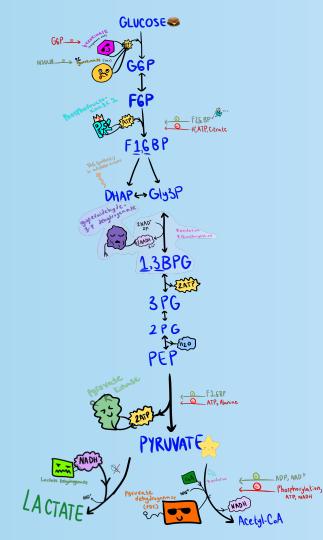

- 3PG: 3 phosphoglyceric acid
- 2PG: 2 phosphoglyceric acid
- PEP: Phosphoenolpyruvate
 - High energy molecule!

Step 9:


- Irreversible reaction
- Activators: F1,6BP
 - Same molecule from earlier on in glycolysis
- Inhibitors: ATP, alanine
 - More ATP = high energy supply = inhibits glycolysis (negative feedback)
 - Alanine: Amino acid derived from pyruvate

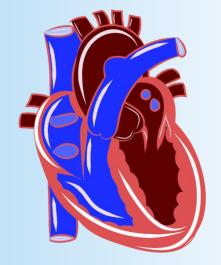
Step 7a: Aerobic respiration


- Irreversible reaction
- When there is O2, pyruvate is converted into acetyl-CoA by pyruvate dehydrogenase complex (PDC)
 - This reaction is called pyruvate decarboxylation
- Acetyl-CoA is a substrate of the Krebs cycle


Step 7b: Anaerobic respiration

- When there is no O2, pyruvate is converted into lactic acid by lactate dehydrogenase
- High amounts of lactic acid are damaging to tissues

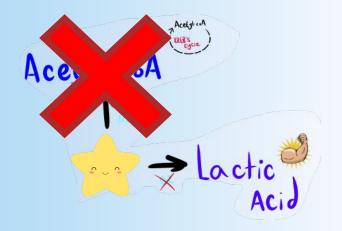
Glycolysis overview:



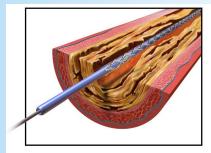
Clinical correlation: Myocardial infarction

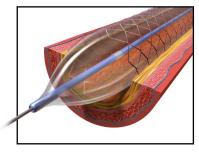
The heart needs a lot of ATP & O2 to function!

Heart ATP supply:


- **95% of ATP** comes from mitochondrial oxidative phosphorylation
 - Aerobic process
- 5% of ATP comes from Glycolysis
 - Aerobic & anaerobic process

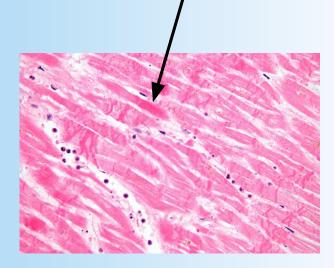
Myocardial infarction:


- Hypoxia of myocardium due to lack of blood flow
- No O2 = anaerobic condition = no mitochondrial oxidative phosphorylation = heart loses major ATP supply
 - Cellular respiration makes ~ 32 ATP
- Glycolysis under anaerobic conditions:
 - Good: Can still make ~ 2 ATP
 - Bad: Makes lactate instead of acetyl-CoA under anaerobic conditions
 - Lactic acid damages tissues



Treatment:

• Treat underlying cause: reperfusion & O2 delivery



Ischemia-reperfusion injury:

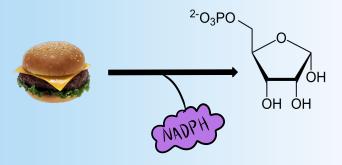
• ROS:

- Ischemia damages mitochondria = unable to reduce O2 = ROS production
- Increased Ca2+:
 - Damaged SERCA = more Ca2+ in cardiomyocyte
 - Hypercontraction = contraction band necrosis
- Altered metabolism:
 - Delayed recovery of aerobic metabolism
 - Lactate production

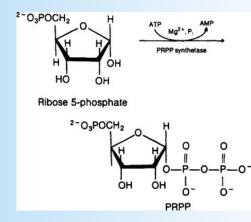
CBN

Glycolysis high yield recap

- Hexokinase vs glucokinase
- Hexokinase/Glucokinase, PFK-1, PK, PDC: irreversible reactions
- Which molecules activate or inhibit glycolysis enzymes
- Rate-limiting step
- Insulin: glycolysis hormone
- Glycolysis NET profit:
 - 2 pyruvate
 - **2** ATP
 - 2 NADH


Pentose Phosphate Pathway (PPP)

PPP

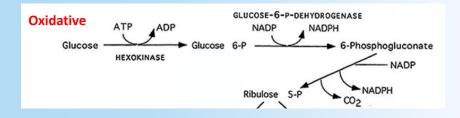

- Alternative way to metabolize glucose
- Products:
 - NADPH
 - Ribose-5-P
- No ATP created or used

When PPP occurs

- When we need NADPH:
 - Cholesterol synthesis: substrate for HMG-CoA reductase to make mevalonate
 - Fatty acid synthesis
 - Riddance of ROS via glutathione reduction
- When we need Ribose-5-Phosphate:
 - For the sugar base of DNA & RNA
 - To make PRPP: PRPP is a precursor for purines & pyrimidines
 - To make F6P & Gly3P: Substrates in glycolysis
 - To make E4P: Makes aromatic amino acids
- When our body is in a "Fed" state
 - Regulated by insulin

Where PPP occurs

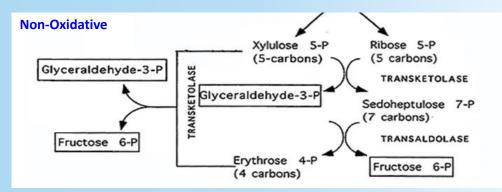
- Molecularly: Cell cytosol
- In RBCs: G6P dehydrogenase (first enzyme of PPP) protects RBCs from H2O2 (a ROS)

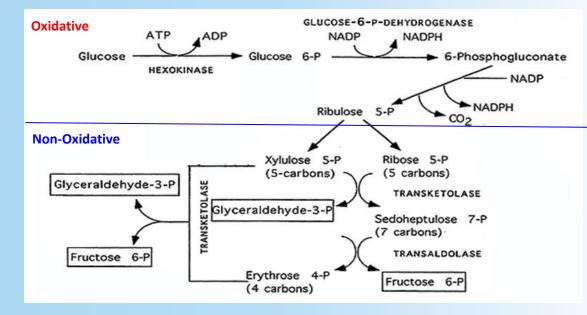

Two phases of PPP

Oxidative phase:

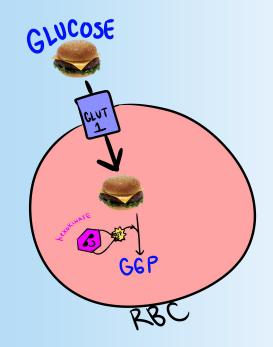
- First phase
- Oxidation: Losing electrons
 - Ex: G6P donates electron (H+)

to NADP to make NADPH

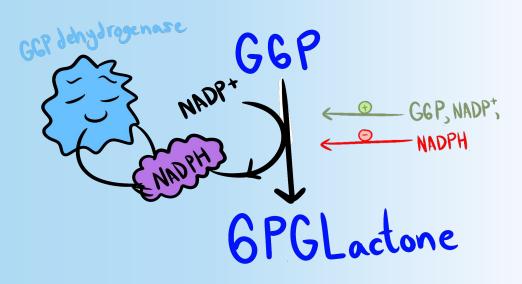

- Irreversible
- Aerobic (O2)
- Products: NADPH & Ribulose-5-P


Non-Oxidative phase:

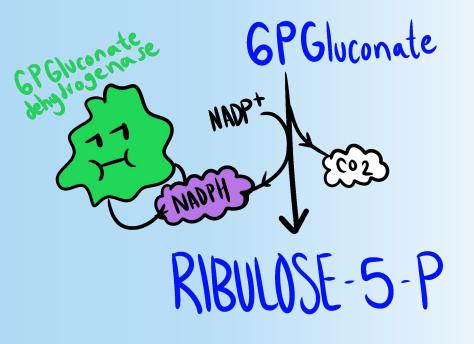
- Second phase
- Reversible
- Anaerobic
- Products:
 - Ribose-5-P
 - **F6P, G3P**
 - **E4P**


Let's start!

Glucose transporter & hexokinase

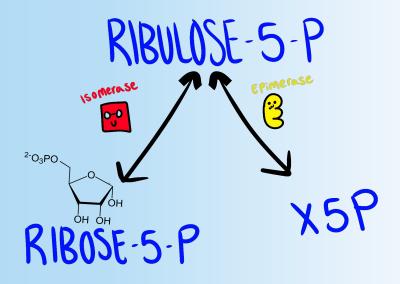

- Glucose must first be transported into the cell via GLUT
 - \circ GLUT1 for RBCs
- Glucose must be converted into glucose-6-phosphate (G6P) in order to be "trapped" in the cell
 - Done via hexokinase (except in liver, which has glucokinase)

- Oxidative/Irreversible rx
- 6PGlactone:
 - 6-phosphogluconolactone
- 1 NADPH is made



- Oxidative/Irreversible rx
- 6PGluconate: 6-phosphogluconate

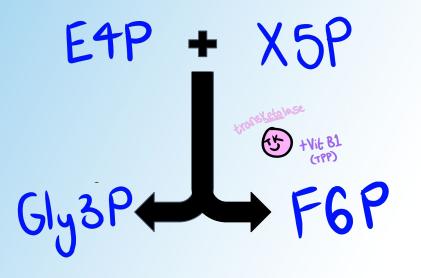
6PGLactone **GPG**luconate



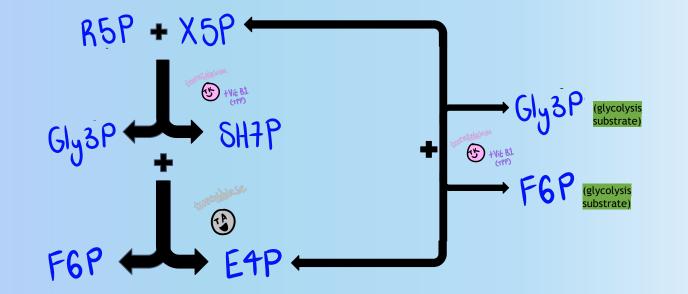
- Oxidative/Irreversible rx
- 1 NADPH is made

- Non-oxidative/reversible rx
- X5P: xylulose-5-phosphate
- Main product: Ribose-5-P

- Non-oxidative/reversible rx
- Adding two molecules with 5 carbons means you have 10 carbons in total
 - You can split up these carbons in different ways in order to make new molecules that add up to 10 carbons
 - Ex) R5P + X5P = 10 C => Gly3P + SH7P = 10 C
- Gly3P: glycolysis substrate
- SH7P: sedoheptulose 7-phosphate
- Transketolase enzymes requires vitamin B1 (thiamine)

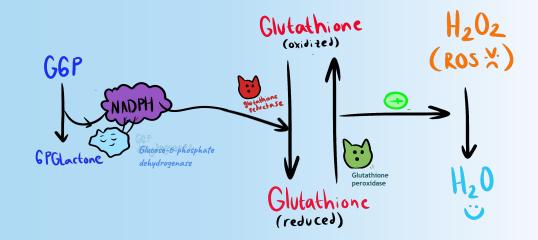


- Non-oxidative/reversible rx
- Rx is the same idea as in Step 4
 - Gly3P + SH7P = 10 C, => F6P + E4P = 10 C
 - Rx done by transaldolase
- F6P: glycolysis substrate



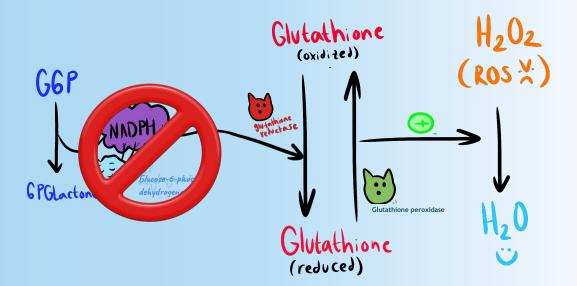
- Non-oxidative/reversible rx
- Rx is same idea as in Step 4, but with 9 C in total instead of 10 C
 - E4P + X5P = 9 C, => Gly3P + F6P = 9 C
- Same transketolase enzyme as in Step 4

Overview of non-oxidative phase interconversions:



Clinical correlation: G6PD deficiency

Normal Conditions:


- G6P Dehydrogenase:
 - 1st PPP enzyme
 - Byproduct: NADPH
 - Super important for RBC protection from ROS
- NADPH reduces glutathione
- Re-oxidizing glutathione turns H2O2 (ROS) into H2O

G6P dehydrogenase deficiency:

- No NADPH
- H2O2 (ROS) buildup
- RBC membrane damage (hemolytic anemia)

PPP high yield recap

- Occurs in cytosol
- Insulin: PPP hormone
- Oxidative vs non-oxidative stage
- Rate-limiting step
- Non-oxidative stage products: substrates for glycolysis & gluconeogenesis
- G6PD deficiency
- PPP NET profit:
 - 2 NADPH
 - **1 CO2**
 - 1 Ribose-5-phosphate

Thank you!

