Gluconeogenesis & Glycogen Metabolism

By Matt Hryniewicki

PLAN

Quick Overview

Gluconeogenesis

-----BREAK-----

Glycogenolysis + Glycogenesis

Glycogen Storage Diseases

Terminology

Kinase: Add phosphate from high energy molecule (ATP) Phosphorylase: Adds phosphate from an inorganic phosphate Phosphatase: Use water to remove phosphate -(P)

Gluconeogenesis

<u>Non</u>carbohydrate Precursors \rightarrow Glucose

GLUCONEOGENESIS

Need <u>2</u> pyruvate per glucose

Glucokinase* → glucose-6-phosphatase

3

2

Hexokinase is in muscle and muscles do not contain glucose-6-phosphatase

Phosphofructokinase → Fructose 1,6-biphosphatase

The 3 irreversible rxn enzymes that need to be bypassed

(4 steps)

Pyruvate Kinase → (a) Pyruvate carboxylase + (b) Phosphoenolpyruvate carboxyl kinase (PEP Carboxyl Kinase)

1: Carboxylation of Pyruvate

- **1.** Pyruvate carboxylase(+<u>biotin</u>) catalyzes carboxylation of pyruvate \rightarrow OAA
- 2. OAA is reduced to malate
- 3. Export malate from mitochondrion \rightarrow cytosol
- 4. Malate is oxidized to OAA
- 5. Phosphoenolpyruvate carboxykinase (PEPCK) decarboxylates and phosphorylates $OAA \rightarrow PEP$ using GTP as phosphate donor

Energy: ATP, GTP PC needs Biotin High CoA: GO

Low CoA: STOP

Why is biotin important?

Biotin + bicarbonate + ATP \rightarrow carboxybiotin "loads the enzyme with CO₂"

Pyruvate carboxylase then adds this CO_2 to pyruvate making OAA

Occurs in mitochondria

Highlights of Step 1

4 reactions are needed to bypass pyruvate kinase (don't forget about the malate shuttle!)

Pyruvate Carboxylase	PEP carboxykinase
Occurs in mitochondria	Malate shuttle Occurs in cytosol
Pyruvate \rightarrow Oxaloacetate	Oxaloacetate → Phosphoenolpyruvate (PEP)
Carboxylates Requires ATP	Decarboxylates Requires GTP
Cofactor: Biotin Acetyl CoA regulates this enzyme	

2: Dephosphorylation of Fructose 1,6 bisphosphate

Enzyme: fructose 1,6-bisphosphatase

Bypasses phosphofructokinase-1

RATE LIMITING ENZYME Inhibited by AMP & F2,6BP Cytosol

3: Dephosphorylation of Glucose-6-phosphate

Enzyme: Glucose-6-phosphatase

Bypasses Glucokinase

Only present in liver and kidney

Makes glucose

Occurs in the endoplasmic reticulum then transported back to cytosol.

Gluconeogenesis: summary

Pyruvate \rightarrow PEP (repeated 2x/glucose):

- Pyruvate \rightarrow oxaloacetate in mitochondria
- Oxaloacetate \rightarrow malate for export to cytoplasm
- Malate \rightarrow oxaloacetate in cytoplasm
- Oxaloacetate \rightarrow PEP
- Hydrolysis of 1 ATP & 1GTP
- Irreversible pyruvate kinase reaction bypassed by PC & PEPCK

Lactate & glucogenic aminoacids enter at this stage

PEP \rightarrow Fructose-6P (PEP \rightarrow Glyc-3P repeated 2x/glucose):

PEP \rightarrow Fructose-1,6-BP reactions shared with glycolysis Hydrolysis of 1 ATP & oxidation of 1 NADH Irreversible PFK-1 reaction bypassed by Fructose-1,6-

Biphosphatase

Glycerol enters at this step

Fructose-6-P \rightarrow Glucose:

Fructose-6P \rightarrow Glucose-6P reaction shared with glycolysis Irreversible glucokinase reaction of glycolysis bypassed by glucose-6-phosphatase

**Reactions shared with glycolysis **Reactions unique to gluconeogenesis

Review of Regulation

GLUCAGON

Lowers **F2,6BP** -> activation of **F1,6-bisphosphatase** (also affected by epinephrine)

Stimulates production of cAMP \rightarrow Stimulates conversion of hepatic PK to its inactive (phosphorylated form) \rightarrow decreasing conversion of PEP to pyruvate \rightarrow diverts PEP to synthesis of glucose

Increases transcription of **PEPCK**

Potent stimulator of the transport of glucogenic amino acids by the liver

Glucagon and epinephrine $\uparrow\uparrow$ in response to decrease in blood glucose

SUBSTRATE AVAILABILITY

Decreased insulin favors mobilization of amino acids from muscle protein providing <u>carbon skeleton</u> for gluconeogenesis

Catabolism of fatty acids provides ATP and NADH required for gluconeogenesis

High amounts of alanine (amino acid) inhibit glycolysis at pyruvate kinase step: "gluconeogenic signal"

Cortisol released during stress and hypoglycemia, synthesizes more PEPCK, PC, and F1,6-BP

ACETYL COENZYME A

During fasting, allosteric <u>activation</u> of **pyruvate carboxylase** by acetyl CoA

(reciprocal inhibition of pyruvate dehydrogenase)

Increased lipolysis \rightarrow fatty acids accumulation \rightarrow lots of acetyl CoA made

<u>AMP</u>

- INHIBITS fructose 1,6-bisphosphatase

Gluconeogenesis	Fed state	Fasting state	Inducer	Represso	or Activator	Inhibitor
Pyruvate carboxylase	\checkmark	\uparrow	Glucocorticoids, glucagon, epinephrine	Insulin	Acetyl-CoA	ADP
Phosphoenolpyruvate carboxykinase	\mathbf{v}	^	Glucocorticoids, glucagon, epinephrine	Insulin		
Glucose-6-phosphatase	\downarrow	\uparrow	Glucocorticoids, glucagon, epinephrine	Insulin		

Precursors

Lactate: provides carbon

Amino Acids: most importantly <u>alanine</u>

Glycerol

Lactate → Pyruvate

Muscles and RBCs (lack mitochondria) make lactate when body needs glucose (during hypoxia, ischemia, tumors, high-intensity exercise or rapid energy needs, like fight-or-flight)

Want to avoid \uparrow lactate build up because leads to \downarrow drop in pH (acidosis).

Take the lactate and turn it into pyruvate.

Source: P.J. Kennelly, K.M. Botham, O.P. McGuinness, V.W. Rodwell, P.A Weil: Harper's Illustrated Biochemistry, Thirty-second Edition Copyright © McGraw Hill. All rights reserved.

Glucose-Alanine Cycle

 \uparrow Acetyl-CoA (from fatty acid oxidation) \oslash pyruvate dehydrogenase leading to a build up ($\uparrow \uparrow$) of pyruvate

Excess pyruvate \rightarrow alanine via **Alanine aminotransferase (ALT)** Alanine is transported to liver and transaminases back to pyruvate

Source: P.J. Kennelly, K.M. Botham, O.P. McGuinness, V.W. Rodwell, P.A Weil: Harper's Illustrated Biochemistry, Thirty-second Edition Copyright © McGraw Hill. All rights reserved.

Other glucogenic amino acids

Glycerol precursor

Triglycerides undergo lipolysis providing glycerol

Glycerol kinase phosphorylates glycerol to glycerol-3-phosphate

G3P gets converted to DHAP

DHAP gets converted to Fructose 1,6bisphosphate

BREAK

Glycogenolysis

Glycogen \rightarrow Glucose

A core protein of glycogenin is surrounded by branches of glucose units. The entire globular complex may contain approximately 30,000 glucose units. Glycogen is smaller and more efficient to store

Higher concentration of glycogen in liver but total muscle mass is greater so 75% of total body glycogen is in muscle Glycogen exists as granules in cell cytoplasm with enzymes for both glycogenesis and glycogenolysis.

Glucose around glycogenin in

- linear α 1,4 bonds
- branched α1,6 bonds

Glycogen in Muscles

- Provides a readily available source of G1P for glycolysis within the muscle
- Lack of Glucose-6-phosphatase does <u>not</u> allow for muscle glycogen to yield free glucose directly

Remember the Cori and glucose-alanine Cycles

Fasting/Starved

⊖ Insulin
 ⊕ Glucagon
 ⊕ Epinephrin

Gly<u>cogen</u>olysis

Break down glycogen \rightarrow glucose

1. Break bonds

 α 1,6 bonds = free glucose α 1,4 bonds = glucose-1-phosphate

2. Convert G1P \rightarrow Glucose

Glycogenolysis step simplified

Cleave glucose residues until 4 are left → Transfer over a group of 3 → Cleave the final glucose → Repeat

Glycogen Phosphorylase 🕂

Type 5: <u>M</u>cArdle's Disease MUSCLE

Type 6: <u>H</u>er's Disease HEPATIC

Breaks α 1,4 bonds

Yields G1P

Requires a coenzyme: Pyridoxal phosphate (derivative of B6)

Phosphate form is active

Rate limiting enzyme

Debranching enzyme 🕂 Type 3: Cori Disease

<u>4- α -glucanotransferase Activity</u>

• Moves trisaccharide unit

Amylo-1,6-glucosidase Activity

Cleaves branch and leaves free glucose

Phosphoglucomutase: isomerization reaction transforming $G1P \rightarrow G6P$

In liver, but not muscle, glucose-6-phosphatase catalyzes hydrolysis of G6P, yielding glucose that is exported \rightarrow increase in the blood glucose

concentration

Type 1: von Gierke Disease

Glycogenesis

Glucose → Glycogen

ILAIKIE

Preparing glucose

Glucose-6-Phosphate

phosphoglucomutase

Moves the phosphate group

Glucose-1-Phosphate

UDP Glucose pyrophosphorylase

Glucose-1-phosphate reacts with uridine triphosphate (UTP) to form the active nucleotide **uridine diphosphate glucose (UDPGlc)** and pyrophosphate

Glycogenin

Protein and enzyme

Autoglucosylation: adds glucose onto itself

Forms a <u>glycogen</u> <u>primer</u> to which **glycogen synthase** can now continue adding glucose

Building Glycogen

Putting it all together

1. Add glucose to pre-existing glycogen fragment

2. If no fragment, glycogenin makes fragment, then we elongate:

STRAIGHT CHAIN (α 1,4)

Glycogen synthase

α 1,4 glycosidic bonds

Hydroxyl group of C1 of activated glucose to the C4 of the accepting glucose chain

Can only elongate an <u>existing</u> chain

RATE LIMITING ENZYME

ACTIVE <u>WITHOUT</u> phosphate*

BRANCHED CHAIN (α1,6) Branching enzyme

Branches every 8-12 glucose residues

Attaches as α 1,6 glycosidic bonds.

Increases solubility and density

Regulation of Glycogen Metabolism

Glycogen Phosphorylase

Phosphorylation: increases activity

Epinephrine, NE, glucagon:

increases formation of cyclic AMP \rightarrow increased phosphorylation

Allosterically inhibited by ATP and G₆P

Only in liver: free glucose is an inhibitor

Only in muscle: AMP is activator

In short Ca2+ is an activator

related to increased release of ٠ epinephrine

Glycogen Synthase

Phosphorylation reduces activity

Insulin increases activity of phosphodiesterase, terminating hormone action, decreasing phosphorylation

(by decreasing phosphorylation we are **INCREASING activity**)

kinase

phosphatase

kinase

phosphatase

Tissue

Liver

Muscle

Glucagon, epinephrine

Epinephrine

glycoge

vnthase

Active

glycogen

hosphorylase

Inactive

Hormone causing

dephosphorylation

Insulin

Insulin

Р

blood

alucose

Go to wooclap.com

Enter the event code in the top banner Event code

Glycogen Storage Diseases

						III - Co
						IV - An
						V - Mc
						VI - He
GSD 0 glycogen synthase	Glycogen		GSD V, VI	ase		@\
and branching enzyme			and debranching enz	vme		
GSD IV			GSD III	,		
UDP-Glucose	Glucose-1-P				Glycolysis pathway	
					1	
	Glucose-6-P 🔶	\rightarrow	Fructose-6-P	\rightarrow	Fructose-1,6	j-P
glucose 6-phosphata	se Glucose		pho	osphofructokina GSD VII	ise	

Glycogen Storage Disorders

Glycogen Storage Diseases		
Туре	Deficient Enzyme	
I – <mark>V</mark> on Gierke	Glucose -6- Phosphate	
II - P om pe	Lysosomal α 1,4 glycosidase	
III - <mark>C</mark> ori	Debranching Enzyme	
IV - Anderson	Branching Enzyme	
V - McArdle	Muscle Glycogen Phosphorylase	
VI - Hers	Hepatic Glycogen Phosphorylase	

Ø Villainous President Called And Molested Her.

www.dentaldevotee.blogspot.com

Type 0: Lewis' disease Glycogen synthase deficiency

Muscle: GYS1 Liver: GYS2

Genetic defect causing decreased or absent activity of the enzyme and moderately decreased amounts of structurally normal glycogen in the liver

<u>Causes:</u> fasting hypoglycemia, high blood ketones, and increased fatty acids and lactate, and low levels of alanine.

- Limited glycogen stores and inadequate gluconeogenesis
- Excess glucose is converted to lactate via glycolytic pathway

Type I: Von Gierke Disease

Glucose-6-phosphatase deficiency

Glucose can't be made; buildup of G6P

Autosomal recessive (both parents have to be carriers)

Deficient in liver, kidney and intestinal mucosa

Ia: deficiency of glucose-6-phosphatase

Ib: deficiency in a translocase

- Glycogen and fat accumulate in liver \rightarrow hepatomegaly
- No glucose = <u>hypoglycemia</u> •
- Hyperuricemia, hyperlipidemia (fat/protein catabolism)

Type II: Pompe Disease

Lysosomal α-glucosidase

(debranching enzyme) deficiency

Most severe disease

Autosomal recessive

Affects muscle and nerve cells

Glycogen can't be broken down in lysosomes and accumulates - especially in heart muscle \rightarrow CARDIOMEGALY

Lysosomes begin to fill with glycogen within muscle fibers

Pompe = Pump

Muscle fibers become damaged and lose function

Type III: Cori's disease

Glycogen debranching enzyme deficiency

- Unable to convert branched glycogen polymers to glucose
- Limit dextrose accumulates in cytoplasm

Excess amounts of **abnormal glycogen structures** deposited in liver, muscles, sometimes heart

Presents during infancy as failure to thrive with <u>hypoglycemia</u>

Hepatomegaly and muscular disease

Type IV: Andersen's disease

Glycogen branching enzyme defect

Autosomal recessive

Long unbranched glucose chains = low solubility \rightarrow glycogen precipitation in the liver \rightarrow <u>CIRRHOSIS</u>

Deposits can build up in muscle and cardiac cells as well

Cori = Coral

McArdle = Muscle

Type V: McArdle's Disease

Myophosphorylase Deficiency

Autosomal recessive

Can't break down glycogen to G1P

Accumulation of intramuscular glycogen and lack of G1P for cellular fuel

Muscle cramps + hypoglycemia on exertion, myoglobinuria

Type VI: Hers Disease

Her = Hepatic

Liver Glycogen Phosphorylase Deficiency

Autosomal recessive (most) OR Xlinked recessive Can't break down glycogen Hepatomegaly, <u>fasting</u> hypoglycemia

Туре	Deficient enzyme	Signs and symptoms
I: Von Gierke (90% of all GSDs)	Glucose-6-phosphatase	 Severe hypoglycemia → hyperlipidemia Lactic acidosis Hepatomegaly Hyperuricemia Short stature/doll-like facies/protruding abdomen
II: Pompe	Lysosomal enzyme defect (acid maltase)	 Cardiomegaly → death by age 2 Hepatomegaly Muscle weakness
III: Cori disease	Debranching enzyme	 Mild hypoglycemia and hepatomegaly
IV: Andersen disease	Branching enzyme	- Infantile hypotonia, cirrhosis and death by 2 years
V: McArdle	Muscle glycogen phosphorylase (myophosphorylase)	 Muscle cramps and weakness on exercise Myoglobinuria No rise in lactate during exercise Recovery or «second wind» after 10-15 minutes of exercise
VI: Hers	Hepatic glycogen phosphorylase	 Mild fasting hypoglycemia (compensated by gluconeogenesis) Hepatomegaly and cirrhosis

LAST ONE!

Event code

THANK YOU!! Good luck on your exam!

