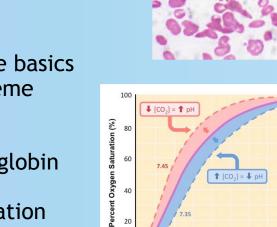
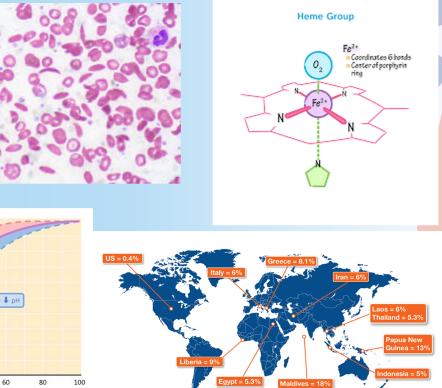
Hemoglobin + Myoglobin Bohr Effect


By Katie Skoczen

Agenda

- Summary of the basics
- Structure of Heme
- Hemoglobin vs Myoglobin
- Types of Hemoglobin
- Bohr Effect
- Oxygen dissociation curves
- **Pathologies**

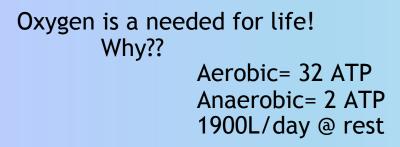
!! Look out for clinical correlations !!

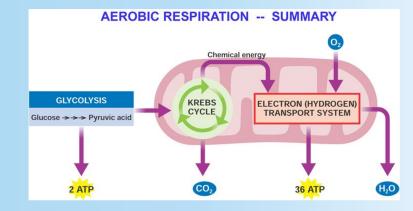

40

20

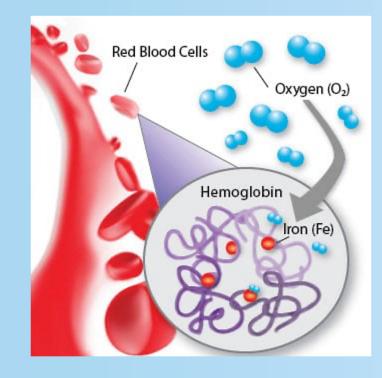
20

40

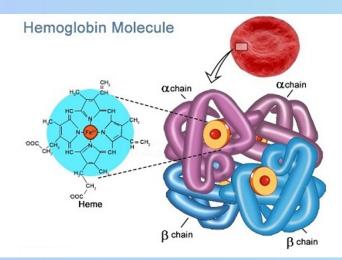

Oxygen Partial Pressure (pO₂ mmHg)

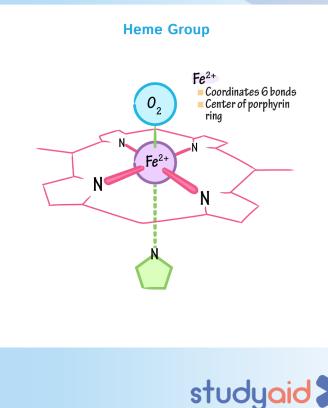


Let's talk the Basics

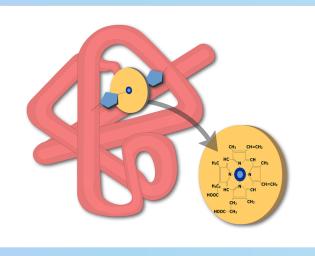


Major problem.... Barely dissolves in blood Free Oxygen is poisonous to tissues

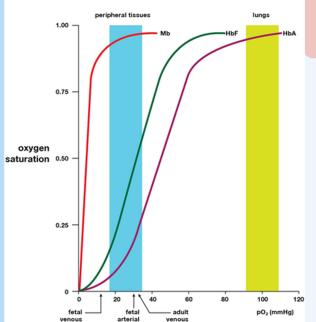

Solution = Heme



Structure of Heme


- Protoporphyrin IV + Fe2+
- Iron in the center with 4 N Bonds
- Histidine binds on the top and/or bottom
 - globin binds the other
- 1 heme= 1 O2 binding ability

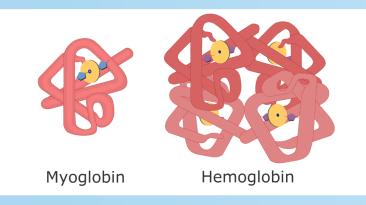
Myoglobin


- Functions as a storage site for O2 in heart and skeletal muscles
- 1 polypeptide chain with nonpolar AA
- 1 02 molecule
- High affinity for Oxygen
 - = O2 CANNOT be released to tissues easily

Hemoglobin

- Found in RBCs
- 4 02 molecules
- Composed of two dimers (4 total subunits)
 - Alpha
 - Beta
 - Gamma
 - Delta
- There are many subtypes
 - HbA: ααββ
 - HbF: ααγγ
 - Fetal Hemoglobin with less 2,3-BPG
 - HbS:ααββ
 - Sickle Cell Anemia

Clinical Correlation ↓Hemoglobin = anemia Symptoms: Fatigue, Weakness, Pale skin, Irregular heartbeats, Shortness of breath, Dizziness or lightheadedness, Chest pain, Cold hands and feet

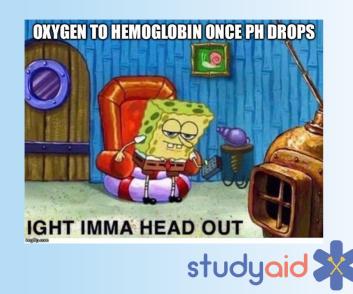

blood

bloor

Oxygen saturation curves

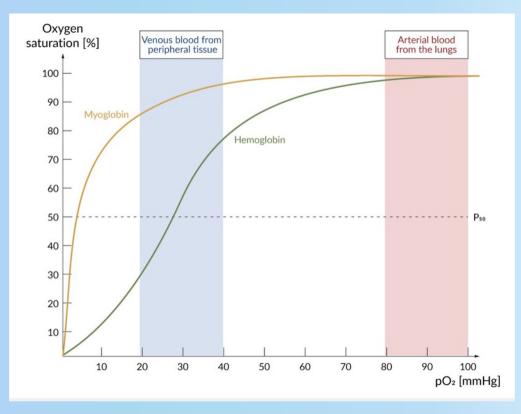
Summary: Myoglobin vs Hemoglobin

Differences between the hemoproteins myoglobin and hemoglobin			
	Myoglobin	Hemoglobin	
Associated with	1 Heme (monomeric)	• 4 Hemes (tetrameric)	
Binds to	1 Oxygen molecule	4 Oxygen molecules	
Affinity for O ₂	Very high (hyperbolic oxygen-myoglobin dissociation curve)	High (sigmoidal curve)	
Function	 Storage of O₂ in muscle Transport of O₂ to mitochondria → aerobic metabolism 	• Transport of O ₂ in blood	

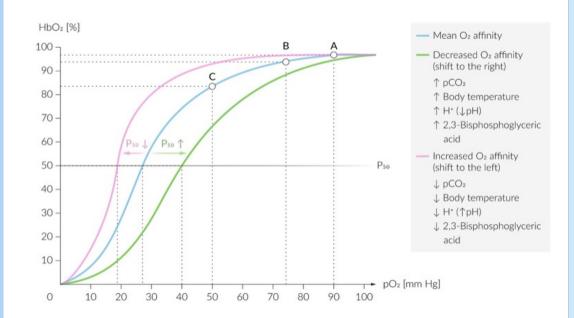


Bohr Effect

- O2 affinity is inversely proportional to CO2 and H+ concentration of blood
- CO2 and H+ are produced during metabolic processes


$$HbO_{2} + H^{+} \rightleftharpoons H^{+}Hb + O_{2}$$
$$HbO_{2} + CO_{2} \rightleftharpoons Hb - COO^{-} + H^{+} + O_{2}$$

Clinical Correlation: pH range= 7.35-7.45 Regulated by kidneys

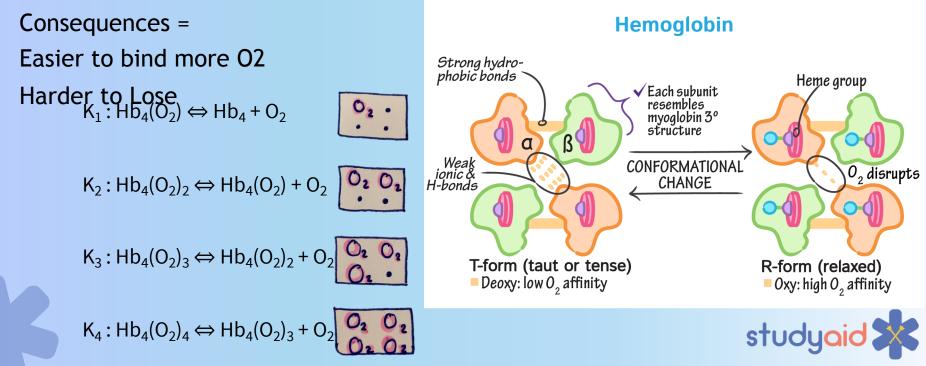


Hemoglobin Dissociation Curve

Hemoglobin Dissociation Curve: Shifts

Cadet Face **RIGHT**

C- CO2 A- Acid (increase H+) (Altitude) **D-** 2,3- DPG **E-** Exercise **T-**Temperature Inc

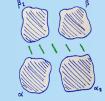


Left Shift= Oxygen is LOCKED up

T Form vs R Form Cooperativity

As one subunit binds oxygen... the adjacent subunits affinity for O2 INCREASES

Oxygen Venous blood from peripheral tissue Arterial blood saturation [%] from the lungs 100 90 80 Hemoglobin 70 60 50 40 30 20 10 10 20 30 50 60 70 80 90 100 pO₂ [mmHg]

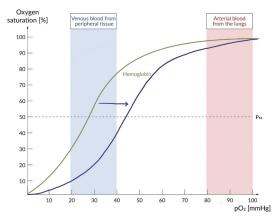

↑ affinity to O₂ (Harder to unload O₂)

R form

Left and Right Shifts

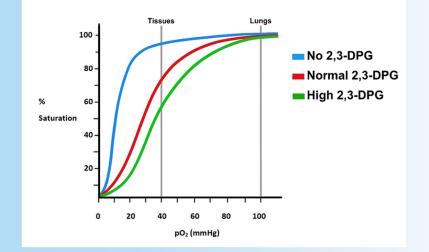
 \downarrow pH (\uparrow H⁺), \uparrow pCO_{2,} \uparrow 2,3-BPG

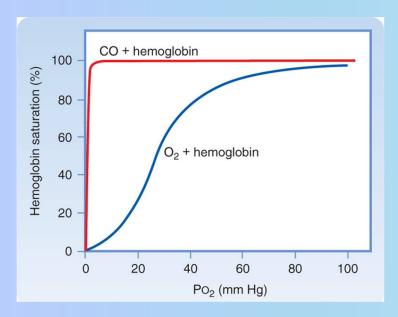
 \uparrow pH (↓ H⁺), ↓ pCO₂, ↓ 2,3-BPG



T form

↓ affinity to O₂ (Easier to unload O₂)




2,3-Bisphosphoglycerate

- Allows for normal physiology!!
- Binds T form of Hb... stabilizes the deoxygenated form
- More T effect = lower affinity
- Increased in high altitudes

note:DPG=BPG

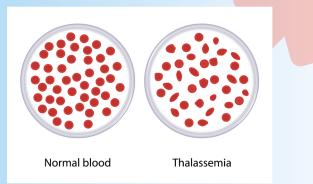
Clinical Correlation: CO Poisoning Symptoms: headache, dizziness, nausea, sleepiness Treatment:100% Oxygen


Carbon Monoxide

- Pathology!!
 - If more than 1%
- Binds R form of Hb... sabilizes the oxygenated form
- Hemoglobin cannot release O2 in tissues
- INCREASED in smokers
- 15%=headache; 50%=loss of consciousness; >60% = DEATH

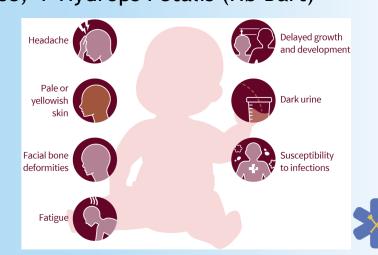
Sickle Cell Trait vs Disease

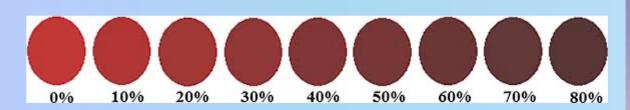
• Single point mutation of beta-globin gene resulting in a glutamate being substituted for valine



- **RBC** deoxygenation = sickling = symptoms!
- In sickle cell patients when O2 curve is shifted RIGHT symptoms increase
 - Infection/fever (temperature increases)
 - Acidosis (H+ concentration increases)
 - Stress (increased metabolic processes/wastes)

Hemoglobin	Normal	Sickle cell trait	Sickle cell disease
HbA	95-98%	60%	0%
HbS	0%	40%	75-95%
HbF	< 2%	< 2%	5-25%


Thalassemias


-4 alleles Mutations: 1= silent, 2=trait, 3=disease, 4=Hydrops Fetalis (Hb Bart)

- 2 alleles Mutations: 1= minor, 2= major

Methemoglobinemia

- Hemoglobin with oxidized iron (Fe3+) instead of reduced (Fe2+)
- Poor O2 binding capability, leading to overall hypoxia
- Can be inherited or caused by drugs (nitrates)
- Similar consequences as thalassemia due to lower baseline O2 levels

studya

Summary

- Myoglobin is 1 polypeptide that binds 1 oxygen molecule TIGHTLY
- Hemoglobin= 2 dimers of heme
- Carries O2 from high to low concentration
- Efficiency of the delivery depends on:
 - pH, CO2, Temp, 2,3-BPG,
 - T form Vs R form contributes to cooperation characteristic
 - Pathology if too much carbon monoxide
 - Left Shift: Increase affinity, decrease dissociation
 - Right Shift: Decreased affinity, increase dissociation
- Pathologies that concern O2 binding affinity
 - Sickle Cell- Right shift causes sickling
 - Thalassemia- Right shift increases symptoms
 - Methemoglobinemia Right shift increases symptoms

How to participate?

wooclap

Connect to www.wooclap.com/DIZLSA

You can participate

Thank you!

