Equilibrium and Acid/Base

Tharunya Kurusanth

Table of contents

- Equilibrium
- Brønsted Lowry theory
- Buffers
- Bicarbonate system
- Quiz

Equilibrium

- Forward reaction rate = backward reaction rate
- No net change concentration, constant

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

Forward reaction: $H_2(g) + I_2(g) \rightarrow 2HI(g)$ Reverse reaction: $2HI(g) \rightarrow H_2(g) + I_2(g)$

• Only solutes and gases!

Equilibrium constant

- Ratio between the concentrations of the products and the concentrations of the reactants
- **Expression:** $aA + bB \rightleftharpoons cC + dD$

$$K_{eq} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

Example from last slide:

 $H_{2}(g) + I_{2}(g) \rightleftharpoons 2HI(g)$

Brønsted-Lowry theory

- Acid = proton (H⁺) donor
- Base = proton (H⁺) acceptor
- Acid \rightarrow conjugate base
- Base \rightarrow conjugate acid
- \rightarrow example: CH₃COOH/CH₃COO⁻

Disassociation

 K_a/K_b - measurement of the ability of the acid/base have to donate/accept protons

Acid expression:

$$egin{aligned} HA_{(aq)} &\rightleftharpoons A^-_{(aq)} + H^+_{(aq)} \ K_a &= rac{[A^-][H^+]}{[HA]} \end{aligned}$$

Base expression:

Strong acid/base: high K_a/K_b Weak acid/base: low K_a/K_b

Formulas to remember

E. 3

C. 7 **D.** 4

$$[0H^{-}] = 0,001 M$$

PH + POH = 14

PH + 3 = 14

PH = 11

$$NaOH \longrightarrow Na^{+} + OH^{-} \qquad [OH^{-}] = O_{1}OOI$$

Buffers - concept

- Solution with a weak acid/conjugate base or weak base/conjugate acid
- Ability to resist changes in pH when acid or base is added
- UWAGA: physiological buffers in our body!
- Henderson-Hasselbach equation:

$$pH = pK_a + \log \frac{[base]}{[acid]}$$

Buffers

- <u>Buffer concentration</u> = $C_a + C_b$
- <u>Buffer capacity</u> = quantity of strong acid/base that must be added to change the pH of 1L of the solution by one pH unit
- \rightarrow more concentrated = larger capacity to resist change

$$\beta = \frac{\Delta n}{\Delta p H} \quad \text{n-moles added of H+/OH-to 1L buffer}$$
change caused by the addition

• <u>Buffer range</u> = pKa +/- 1

6. What is the pH of acetate buffer containing 0.05 moles of acetic acid (CH₃COOH) and 0.09 moles of sodium acetate (CH₃COONa) in 2L of buffer? What is the buffer concentration? What would be the change in pH if 1 mL of 8M NaOH was added to above buffer? For acetic acid $K_a = 1.75 \times 10^{-5}$. What is the buffer capacity towards bases?

Physiological buffers - bicarbonate system

• Maintain pH in blood \rightarrow metabolic function

$$\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \rightleftarrows \mathrm{H}_2\mathrm{CO}_3 \rightleftarrows \mathrm{HCO}_3^- + \mathrm{H}^+$$

- Excess $H^+ \rightarrow CO_2$ exhales
- Dec. $H^+ \rightarrow$ Shifts to right

Important Normal Values on ABG					
рН	7.35	-	7.45		
pCO₂	35 mmHg		45 mmHg		
pO₂	75 mmHg		100 mmHg		
HCO ₃	22 mEq/L		26 mEq/L		
O₂ Sat	Greater than 95%				

3100

Acid/Base disorders

- Alkalosis high pH
- Acidosis low pH
- Respiratory PaCO2 acidic
- Metabolic HCO₃⁻ basic

ABG	pН	PaCO2	НСО 3
Respiratory Acidosis	ļ	1	normal
Respiratory Alkalosis	1		normal
Metabolic Acidosis	ļ	normal	Ļ
Metabolic Alkalosis	1	normal	1

QUIZ©

Go to wooclap.com

Enter the event code in the top banner

