Basic calculations

By Ola Amland

How many g of NaCl and water are there in 80 g of 20% solution?

First, calculate the amount of NaCl in the solution:
$\mathrm{NaCl}=20 \%$ of 80 g
$\mathrm{NaCl}=0.20 \times 80 \mathrm{~g}$
$\mathrm{NaCl}=16 \mathrm{~g}$

Next, find the amount of water in the solution:
Water $=80 \mathrm{~g}-\mathrm{NaCl}$
Water $=80 \mathrm{~g}-16 \mathrm{~g}$
Water $=64 \mathrm{~g}$

How many grams of KCl should be dissolved in 50 g of water to obtain 5% solution?
$50 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}+0,05 \mathrm{xCl}=x$
Where x is total amount in grams
$50 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=0,95 x$
$\frac{50 g \mathrm{H}_{2} \mathrm{O}}{0,95}=\mathrm{x} \longrightarrow x=52,63 \mathrm{~g}$

$$
x=52,63 g
$$

$52,63 g-50 g=\underline{2,63 g}$

Moles

1 mole $=6,022 \times 10^{23}$ particles
$6,022 \times 10^{23}=$ Avogadros number

SI Prefixes

	SI Prefixes		
Factor	Name	Symbol	Numerical Value
10^{12}	tera	T	1000000000000
10^{9}	giga	G	1000000000
10^{6}	mega	M	1000000
10^{3}	kilo	k	1000
10^{2}	hecto	h	100
10^{1}	deka	da	10
10^{-1}	deci	d	0.1
10^{-2}	centi	c	0.01
10^{-3}	milli	m	0.001
10^{-6}	micro	μ	0.000001
10^{-9}	nano	n	0.000000001
10^{-12}	pico	p	0.000000000001

$$
\operatorname{Moles}(n)=\frac{\operatorname{Mass}(g)}{\text { Molar mass } g / m o l}
$$

Calculate molar [M], milimolar [mM] and micromolar [$\mu \mathrm{M}$] concentration if HCl solution contains 3.65 mg in $1 \mathrm{~mL} . \mathrm{MHCl}=36.5 \mathrm{~g} / \mathrm{mol}$

$$
\begin{gathered}
\text { Moles }(\mathrm{HCl})=\frac{\text { Mass }}{\text { Molar mass }} \\
\text { Moles }(\mathrm{HCl})=\frac{3,65 * 10^{-3} \mathrm{~g}}{36,5 \mathrm{~g} / \mathrm{mol}} \\
\operatorname{Moles}(\mathrm{HCl})=0,0001
\end{gathered}
$$

Calculate molar [M], milimolar [mM] and micromolar [$\mu \mathrm{M}$] concentration if HCl solution contains 3.65 mg in $1 \mathrm{~mL} . \mathrm{MHCl}=36.5 \mathrm{~g} / \mathrm{mol}$
 $\operatorname{Moles}(H C l)=0,0001$
 Molarity $=$ moles $/ \mathrm{l}$
 $M(\mathrm{HCl})=0,0001 \mathrm{n} / 1^{*} 10^{-3} \mathrm{l}$
 $M(\mathrm{Hcl})=0,1$ moles $/ \mathrm{l}=\underline{0,1 M}$
 $\mathrm{mM}=0,1 \mathrm{moles} / \mathrm{l} * 1000=\underline{100 \mathrm{mM}}$
 $\mu M=0,1$ moles $/ \mathrm{L} 10^{6}=100000 \mu \mathrm{M}$

How many grams of 1% solution(A) and 0.1% solution (B) should be mixed to obtain 180 g of 0.5% solution (C)?

$$
\text { Equation 1: } 0.01 x+0.001 y=0.9
$$

Equation 2: $x+y=180$ (since the total weight is 180 grams)

How many grams of 1% solution(A) and 0.1% solution (B) should be mixed to obtain 180 g of 0.5% solution (C)?

- Equation 1: $0,01^{*} \mathrm{~A}+0,001^{*} \mathrm{~B}=0,005^{*} \mathrm{C}, \quad \mathrm{C}=180 \mathrm{~g}$
- Equation 2: $\mathrm{A}+\mathrm{B}=180 \mathrm{~g}$
- Equation 2: $A=180 \mathrm{~g}-\mathrm{B}$
- Put 2 in 1: $0,01(180 \mathrm{~g}-\mathrm{B})+0,001 \mathrm{~B}=0,9$
- $1,8-0,01 \mathrm{~B}+0,001 \mathrm{~B}=0,9$
- 0,9=0,009B
- $B=100 \mathrm{~g}$

KCl solution contains 2 mg of this compound in 1 ml of solution ($\mathrm{d}=1 \mathrm{~g} / \mathrm{ml}$). Calculate the $\%$ concentration. Calculations could be performed on an assumption that densities of all solutions are approximately $1 \mathrm{~g} / \mathrm{ml}$.

- Total density $=1 \mathrm{~g}$
- $2 \mathrm{mg} / 1 \mathrm{~g}$
- $0,002 \mathrm{~g} / 1 \mathrm{~g}$
- $0,2 \%$
a You
How many mg in a gram
(9) ChatGPT

There are 1000 milligrams (mg) in one gram (g).

How many mL of water should be added to 20 mL of 0.2 M solution to obtain 0.01 M solution. Calculations could be performed on assumption that densities of all solutions approximately are equal to $1 \mathrm{~g} / \mathrm{mL}$

volume of added water $=0 \mathrm{~mL}$

So, to obtain a 0.01 M solution from 20 mL of a 0.2 M solution, you don't need to add any water. The initial solution already has the desired concentration.

The dilution formula is:

$$
C_{1} V_{1}=C_{2} V_{2}
$$

Given that:

- $C_{1}=0.2 \mathrm{M}$ (initial concentration),
- $V_{1}=20 \mathrm{~mL}$ (initial volume),
- $C_{2}=0.01 \mathrm{M}$ (final concentration),
- V_{2} is the volume of the final solution (which is $20 \mathrm{~mL}+$ volume of added water).

I apologize for any confusion in my previous responses. Let me clarify:

```
(0.2 M)}\times(20\textrm{mL})=(0.01\textrm{M})\times(20\textrm{mL}+\mathrm{ volume of added water }
4=0.01 }\times(20+\mathrm{ volume of added water }
20+ volume of added water }=\frac{4}{0.01
20+ volume of added water }=40
volume of added water }=380\textrm{mL
```

Solution A was diluted 5 times with water. Then $20 \mu \mathrm{~L}$ of the resulting solution B was mixed with 0.48 mL of water (solution C) and finally $200 \mu \mathrm{~L}$ of solution C was introduced to the volumetric flask of the nominal volume 10 mL . The flask was filled with water and the molarity of the solution in the flask was assayed $1 \mu \mathrm{M}$. Calculate the initial molarity of solution A .

Solution A

Dilated $5 x$

Solution B

Solution C studyaid

Solution A

Dilated $5 x$
$0,5 \mathrm{~mL} / 0,02 \mathrm{~mL}=25$

- $50^{*} 25^{*} 5=6250$
- $1 \mu \mathrm{M}^{*} 6250=\underline{6250} \mu \mathrm{M}$ or $6,25 \mathrm{mM}$

Calculations could be performed on assumption that densities of all solutions approximately are equal to $1 \mathrm{~g} / \mathrm{mL}$
a) 100 mL of 2 mM KOH solution was mixed with 400 ml of 1 mM HCl solution. Calculate molar concentrations (M) of all compounds in the reaction mixture.
b) 100 mL of 1.2 mM KOH solution was mixed with 100 ml of 1 mM H 2 SO 4 solution. Calculate molar concentrations (M) of salts in the reaction mixture.
a) 100 mL of 2 mM KOH solution was mixed with 400 ml of 1 mM HCl solution. Calculate molar concentrations (M) of all compounds in the reaction mixture.

- $0,1 \mathrm{~L}^{*} 2 \mathrm{mM}=0,2 \mathrm{mmol} \mathrm{KOH}$
- $0,4 L^{*} 1 \mathrm{mM}=0,4 \mathrm{mmol} \mathrm{HCl}$

$$
\mathrm{KOH}+\mathrm{HCl} \rightarrow \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}
$$ 0,2mad 0, 4max

100 mL of 1.2 mM KOH solution was mixed with 100 ml of 1 mM H2SO4 solution. Calculate molar concentrations (M) of salts in the reaction mixture.

- $0,1 \mathrm{~L} * 1,2 \mathrm{mM}=0,12 \mathrm{mmol} \mathrm{KOH}$
- $0,1 \mathrm{~L}^{*} 1 \mathrm{mM}=0,1 \mathrm{mmol} \mathrm{H} 2 \mathrm{SO} 4$

$$
\begin{aligned}
& \frac{0,08 \mathrm{mmd}}{0,2 \mathrm{~L}}=0,4 \mathrm{mM}
\end{aligned}
$$

\#Go to wooclap.com
Event code
Enter the event code in the top IHAOUU
banner

How many g of KOH and water are there in 50 g of 10% solution?

1. Mass of KOH:

Mass of $\mathrm{KOH}=$ Percentage of $\mathrm{KOH} \times$ Total Mass of Solution
Mass of $\mathrm{KOH}=0.10 \times 50 \mathrm{~g}=5 \mathrm{~g}$
2. Mass of Water:

Mass of Water $=$ Total Mass of Solution - Mass of KOH
Mass of Water $=50 \mathrm{~g}-5 \mathrm{~g}=45 \mathrm{~g}$

How many mL of 0.09 M solution (A) and 0.01 M solution (B) should be mixed to obtain 100 mL of 0.02 M solution (C)?

- Eq1: $0,09^{*} A+0,01^{*} B=0,02 M^{*} C, c=0,1 L$
- Eq2: $A+B=0,1 L$
- Eq2: A=0,1L-B
- 0,09(0,1-B) $+0,01 \mathrm{~B}=0,002$
- $0,009-0,09 \mathrm{~B}+0,01 \mathrm{~B}=0,002$
- $0,08 \mathrm{~B}=0,007$
- $B=87,5 \mathrm{~mL}$
- $A=12,5 \mathrm{~mL}$

Solution A was diluted 2 times with water. Then $10 \mu \mathrm{~L}$ of the resulting solution B was mixed with 0.49 mL of water (solution C) and finally $0,5 \mathrm{~mL}$ of solution C was introduced to the volumetric flask of the nominal volume 10 mL . The flask was filled with water and the molarity of the solution in the flask was assayed 10 mM . Calculate the initial molarity of solution
A.

- 1st step: $2 x$ dilution
- 2nd step:0,5mL/0,01mL=50x dilution
- 3 rd step: $10 \mathrm{~mL} / 0,5 \mathrm{~mL}=20 \mathrm{x}$
- 2*50*20=2000
- $10 \mathrm{mM}^{*} 2000=20 \mathrm{M}$

