Action Potential

🕨 By Michelle Kaminski 🔍

What We Will Learn!

- 1. Orientation and Resting Membrane Potential Neurons
- 2. Action potential
 - a. Depolarization
 - b. Repolarization
 - c. Hyperpolarization
- 3 Refractory Periods
- 4. WooClap

Neurons generating action potentials all the time

Neurons trying to understand how action potential actually works

Lets get Oriented!

Lets get Oriented!

Na + = ECM

Membrane potential:

The difference in voltage between in inside and outside of the cell.

This difference in voltage is caused by an uneven distribution of ions (Na⁺, K⁺, Cl⁻, etc.) across the cell membrane.

Resting Potential:

The stable membrane potential when the cell is not active.

In Neurons: -70 mV

But how does it stay resting???

"WHERE DAFUC DA FUNCTIONNNN" - Drake 2025

Na⁺-K⁺ ATPase pumps 3 Na+ out and 2K+ in using 1 ATP

NOW NEGATIVE CHARGE HAS BEEN BORN

K+ Leak channel has a high conductance so it allows more K+ to flow out and make cell even more negative!!

Na+ leak channel has much lower conductance.

What We Will Learn!

1. Orientation and Resting Membrane Potential

- 2. Action potential
 - a. Depolarization
 - b. Repolarization
 - c. Hyperpolarization
- 3. Refractory Periods
- 4. WooClap

Action Potential

Depolarization

1. THRESHOLD STIMULUS IS RECEIVED!!

a. Finally the neuron got a stimuli big enough to start an action potential

2. Cell Membrane Threshold is reached!

a. VG Na⁺ are now open and Na⁺ will rush into the cell

Voltage gated Na+ Channels are open !!

Voltage Gated Channels

Hyperpolarization

What We Will Learn!

1. Orientation and Resting Membrane

Potential

- 2. Action potential
 - a. Depolarization
 - b. Repolarization
 - c. Hyperpolarization
- 3. Refractory Periods
- 4. WooClap

Refractory Periods

Absolute Refractory period

- When Na+ channels close their inactivation gate, An action potential is **impossible** at this time.
- No amount of stimulus can activate another action potential
- This prevents the action potential from moving backwards on the axon

Refractory Periods

Relative Refractory Period

- After some time the inactivation gate on the Na+ channel opens.
- The activation gate can open at the threshold potential.
- Some Na+ channels take longer to re-activate.
- Open K+ channels make it very difficult to reach the threshold.

