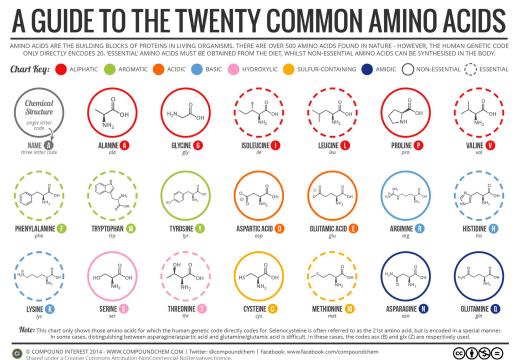

Amino Acids & Urea Cycle

Karolina Orocz

Amino Acids

Table of contents


- Amino acid classifications:
 - Structures
 - Essential vs non-essential
 - Glucogenic vs ketogenic
 - Branched chain amino acids
 - One-carbon pool
- Deamination
- Conversions:
 - BCAAs
 - Alanine \rightarrow Pyruvate
 - A-ketoglutarate \rightarrow Glutamate \rightarrow Glutamine, GABA
 - Glutathione
 - $\bullet \qquad \text{Arginine} \rightarrow \text{creatinine, NO}$
 - $\bullet \qquad \text{Methionine} \rightarrow \text{homocysteine} \rightarrow \text{succinyl-coa}$
 - Tryptophan \rightarrow melatonin & serotonin
 - Phenylalanine \rightarrow tyrosine \rightarrow
- Metabolic defects

Amino acid classifications

Amino acid structures

Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

\star

Essential vs non-essential amino acids

IO ESSENTIAL AMINO ACIDS

⊘ PVT. TIM HALL

Phenylalanine Valine Tryptophan

Threonine Isoleucine Metheonine

Histidine(semi-essential) Arginine(semi-essential) Leucine Lysine

Glucogenic vs ketogenic amino acids

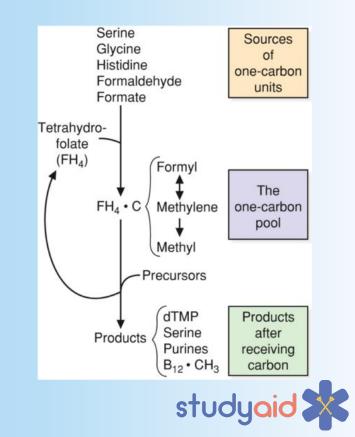
Glucogenic:

- Breaking them down yields
 pyruvate or a Krebs cycle
 substrate
- Can be used for gluconeogenesis

Ketogenic:

- Breaking them down yields things with acetate
 - Acetoacetate
 - Acetyl-coa
 - Acetoacetyl-coA
- Cannot be used for gluconeogenesis 😢

Ketogenic a.a: "Ls"	Glucogenic a.a:	BOTH: "TTIP"
Leucine	Everything else	Tyrosine
Lysine		Tryptophan
		Isoleucine
		Phenylalanine


Branched chain amino acids

- Amino acid with aliphatic side chain (only contains H or C)
- Can be converted into molecules containing acyl-CoA
 - via dehydrogenation (Uses FAD+)
- Are metabolized in the muscles!

BCAA: "I love Bailey's"	Product	*	
Isoleucine	Acetyl-CoA, Propionyl-CoA	Acetyl-CoA, Propionyl-CoA	
Leucine	Acetoacetyl-CoA		
Valine	Propionyl-CoA		
	S	stugyaid 🕽	

One carbon pool amino acids

- Amino acids can donate one carbon to make other molecules
 - Serine
 - Glycine
 - Histidine
 - Tryptophan
- Done via FH4 (tetrahydrofolate)

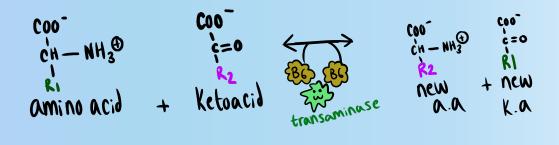
Deamination

What is Deamination?

Converting or breaking down amino acids!

How?

- Convert them into other molecules our body can use (transamination)
- Remove their amine group and excrete them as ammonia in urine (non-oxidative deamination)



Transamination

- Combining an amino acid and a keto acid to make a new amino acid and new keto acid
- Done by **aminotransferases**
 - Use B6 (PLP)!!
- Happens in heart during myocardial infarction and in the liver during hepatitis

High yield examples of transamination

 \star SGOT: AST (aspartate transferase) serum glutamic-oxaloacetic transferase

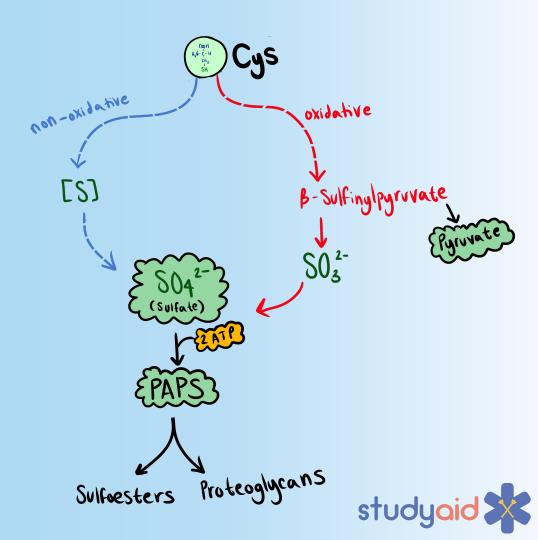
★ SGPT: ALT (alanine transferase), serum glutamic pyruvic transferase

★ AST & ALT are liver enzymes!

Non-oxidative deamination

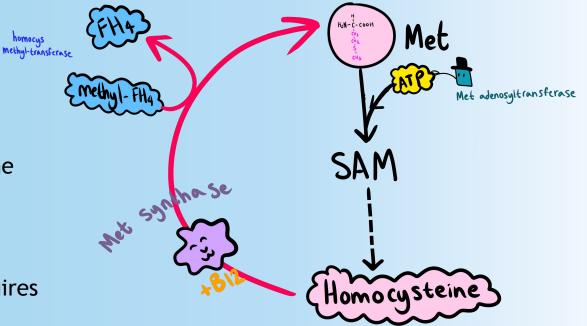
- Breaking down amino acids by removing their amine (-NH2) group
 - Serine
 - Threonine
 - Glutamate
- Makes ammonia (NH3) as byproduct
 - Ammonia is toxic!
 - Urea cycle neutralizes ammonia

Ser 3 > a-ketobutyrate + NH3 \rightarrow $a-KG + NH_3$



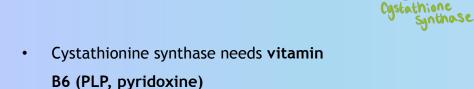
Amino acid conversions

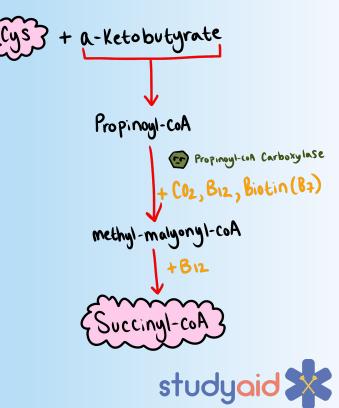
Cysteine


- Cysteine ultimately donates sulfur to make other molecules
- Breakdown can either be oxidative or non-oxidative
- PAPS:
 - Phosphoadenosine phosphosulfate
 - "Active" sulfur

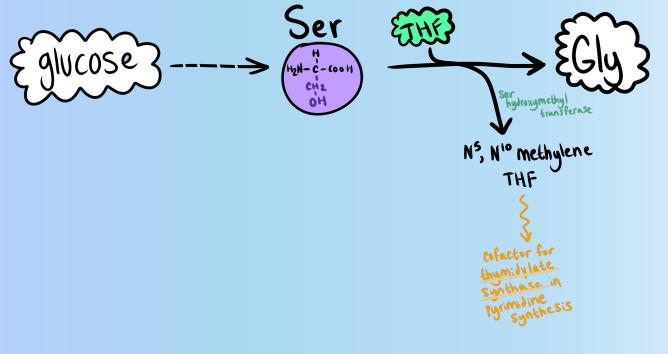
\star

Methionine


- Methionine makes homocysteine
- SAM:
 - S-Adenosylmethionine
 - Will be used later to make **creatine** too
- Methionine synthase requires vitamin B12



Homocysteine



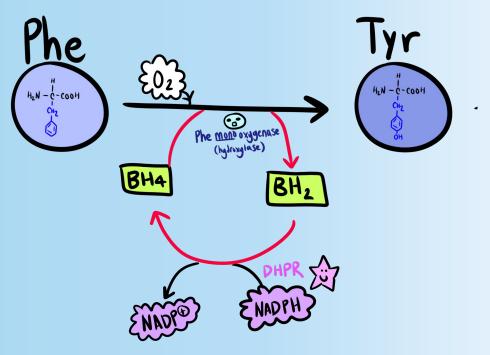
homocysteine 3 + Ser -> Cystathione -

- Propionyl-CoA carboxylase needs vitamin B12, biotin, & CO2
- Vitamin B12 deficiency:
 - Build up of propionyl-CoA and methyl-malonyl-CoA
 - Acidemia
 - Neurological dysfunction

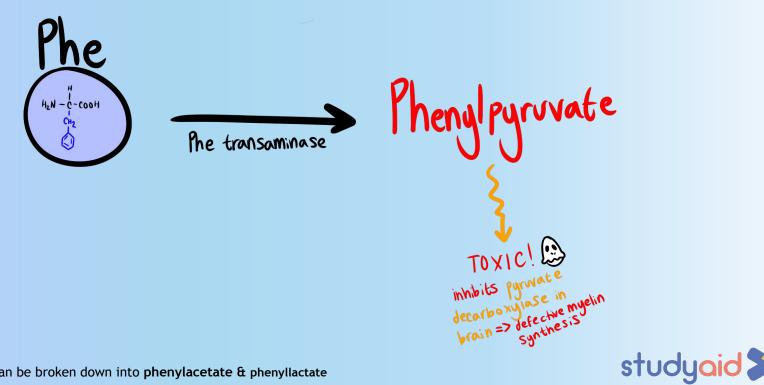
Serine

Tryptophan

& NADPO

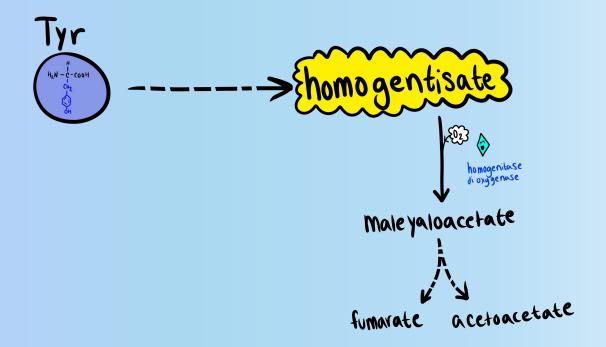

- Tryptophan is converted by oxygenases
- Tryptophan makes niacin, serotonin, & melatonin

studyaid 🔀

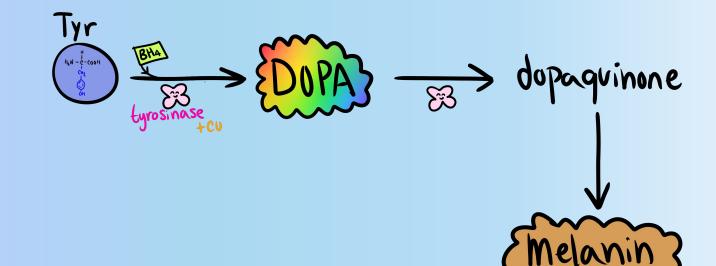


Phenylalanine

- Phenylalanine monooxygenase needs
 BH4 (tetrahydrobiopterin)
- BH4 is regenerated by the help of DHPR (dihydropteridine reductase)

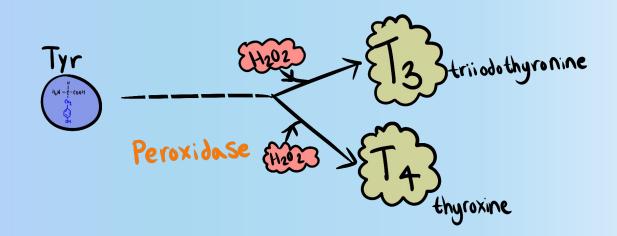


Phenylpyruvate can be broken down into phenylacetate & phenyllactate ٠

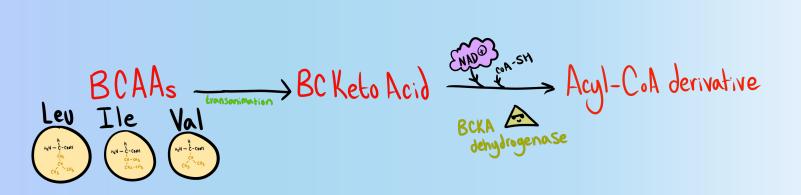

Tyrosine

• Homogentisate buildup = alkaptonuria

- Tyrosinase requires BH4 and copper
- Melanin: pigment of skin
 - Albinism: melanin deficiency

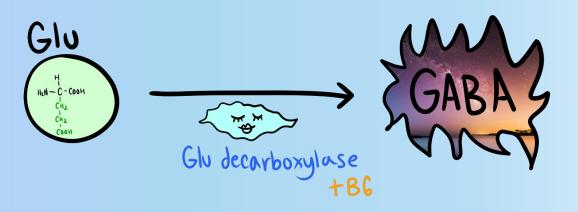


- Dopamine & norepinephrine: neurotransmitters
 - Parkinson's disease: dopamine deficiency
 - Norepinephrine synthesis requires vitamin C
 - Scurvy: vitamin C deficiency
- Epinephrine: adrenal hormone
 - Synthesis requires SAM (from methionine)

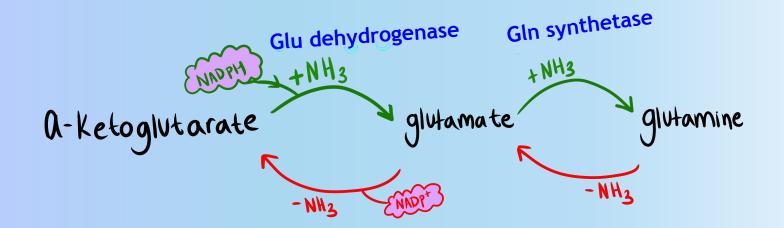


- T3 & T3 are thyroid hormones
- In total, tyrosine makes homogentisate, melanin, dopamine, norepinephrine, epinephrine, and thyroid hormones
- Tyrosine is derived from phenylalanine

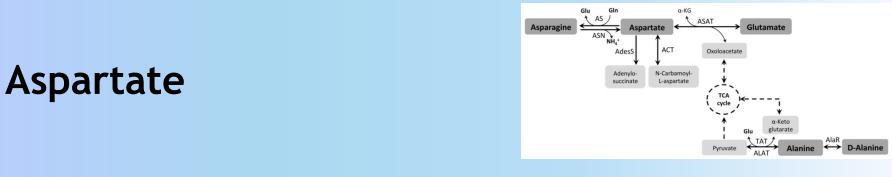
\star

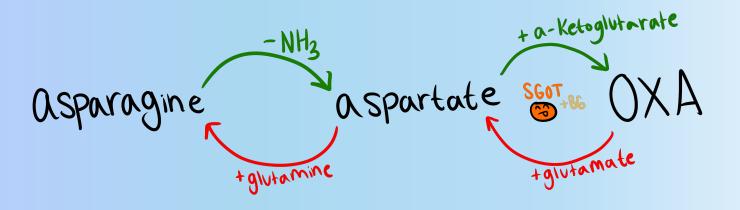

BCAAs

- Defective BCKA dehydrogenase: maple urine syrup disease
 - Buildup of BC keto acids


Glutamate

- GABA: y-aminobutyric acid
 - Inhibitory neurotransmitter





- These are transamination reactions
- To go from a-ketoglutarate \rightarrow glutamate \rightarrow glutamine, ADD ammonia (NH3), which donates amine group
- To go from glutamine \rightarrow glutamate \rightarrow a-ketoglutarate, REMOVE ammonia (NH3)
- Glu dehydrogenase is inhibited by GTP and activated by ADP

- These are transamination reactions
- Glutamate & Glutamine donate amine groups
- SGOT is the same as AST!

Glutathione

Glu + Cys + Gly = glutathione "y-glutamyleysteiny/glycine"

• Glutathione: antioxidant, reduced glutathione converts H2O2 into H2O

Arginine Arg Nitric Oxide synthase (NOS) H2N -C- COOM -> NO* + Citruline CH2

- Nitric oxide (NO*): free radical
 - For vasodilation
 - For macrophage respiratory burst

- Creatine phosphate:
 - Storage of phosphate, a very high energy molecule, in the muscles
 - We have enough ATP in the body? Make creatine phosphate!
 - Don't have enough ATP in the body? Break down creatine phosphate!
 - Working out = destroying muscle

Arg

HEN -C-COOH

- Creatinine:
 - Waste product of the muscles
 - Kidneys filter our creatinine
 - Marker of kidney function
 - High levels = bad

Kidney > quanidoacetate liver SAM Creatine Creatine Phosphate Creatine phosphokinase study

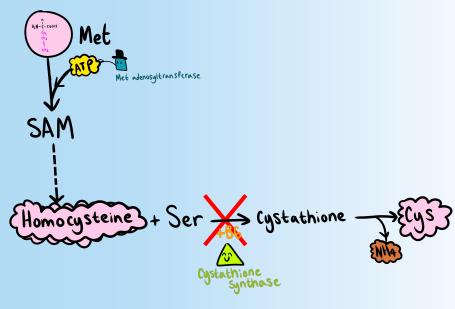
Summary

Molecule	Products (and associated cofactors)
Glutamate	 Aspartate (SGOT + B6) Alanine (SGPT + B6) GABA (B6) Glutamine (NH3)
A-ketoglutarate	 Oxaloacetate (SGOT + B6) Pyruvate (SGPT + B6) Glutamate (NH3)
Serine	PyruvateGlycine (THF)
Threonine	a-ketobutyrate
Cysteine	PyruvateSulfatePAPS
	\$

Molecule	Products (and associated cofactors)
Methionine	- SAM - Homocysteine
Homocysteine	 Cysteine A-ketobutyrate succinyl-CoA (B12, CO2, biotin)
Tryptophan	 Niacin Serotonin (BH4) Melatonin (BH4)
Phenylalanine	Tyrosine (BH4)Phenylpyruvate

Molecule	Products (and associated cofactors)
Tyrosine	 Homogentisate DOPA Melanin Dopamine (B6) Norepinephrine (Vit C) Epinephrine (SAM) T4 & T4 (H2O2)
BCAAs	 Branched chain keto acids Acyl-CoA derivatives
Aspartate	- Asparagine - Oxaloacetate
Arginine	 Nitric oxide Creatine & creatinine

Enzyme	General cofactor	
Amino transferase	B6 (PLP, pyridoxine)	
Carboxylase	Biotin (B7), CO2, B12 (sometimes)	
Decarboxylase	B6 (PLP, pyridoxine)	
Monooxygenase/hydroxylase	BH4	



Metabolic defects

Homocystinuria

- What:
 - Defective cystathionine synthase
 - Homocysteine & methionine buildup in urine
 - Less cysteine
- Symptoms:
 - Lens dislocation
 - Long limbs & fingers
 - Intellectual disability
- Tx:
 - Restriction of methionine intake
 - B6, B12, or folate supplementation

Maple Syrup Urine Disease

What:

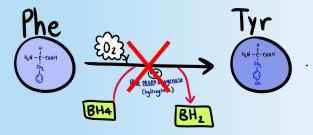
deficiency of BCKA dehydrogenase (BCKD) •

Lev

Tle

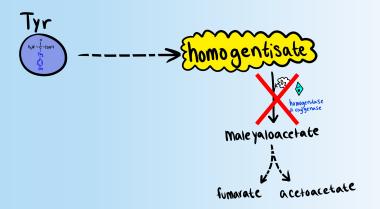
Val

- BCAAs & BCKAs buildup •
- Autosomal recessive •
- Symptoms: •
 - Neurotoxicity •
 - **Ketoacidosis** •
 - "Maple syrup" odor of urine •
 - Fatal if not treated in neonates •
- Tx: •
 - Restriction and close monitoring of BCAAs •



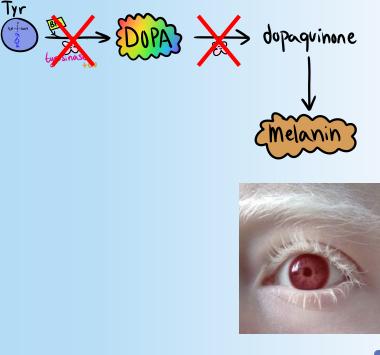
Phenylketonuria (PKU)

• What:


- Deficiencent phenylalanine hydroxylase (PAH) or BH4
- **Phenylalanine** buildup (10x the normal) in urine
- Symptoms:
 - Musty odor urine
 - Phenylpyruvate, phenylacetate, phenyllactate buildup
 - Less skin pigment
 - Less tyrosine
 - Severe intellectual disability, developmental delay, microcephaly
- Tx:
 - Lifelong restriction of Phe
 - Tyrosine or BH4 supplements

Alkaptonuria

- What:
 - Deficiencent homogentisate dioxygenase
 - Homogentisate & tyrosine buildup
 - Symptoms start ~ age 40
- Symptoms:
 - Black, spotted pigment on skin and eyes
 - Black urine (due to aciduria)
 - Large joint arthritis
- Tx:
 - Low tyrosine and phenylalanine diet



Albinism

- What:
 - Tyrosinase dysfunction or copper deficiency
 - Little melanin
 - Autosomal dominant, recessive, or X-linked
- Symptoms:
 - Loss of skin, hair, & eye pigmentation
 - Vision defects
 - Increased skin cancer risk

Summary

Disorder:	Cause:	Main symptoms:
Homocystinuria	Defective cystathionine synthase	 Lens dislocation Long extremities Intellectual disability
Maple syrup urine disease	Defective BCKA dehydrogenase	Sweet odor of urineNeurotoxicity
Phenylketonuria	Deficient Phe hydroxylase or BH4	 Musty odor of urine Less pigment Intellectual disability
Alkaptonuria	Deficient homogentisate dioxygenase	Black spots & urineArthritis
Albinism	Deficient tyrosinase or copper	- Loss of pigmentation

Э

Wooclap

Go to wooclap.com

Enter the event code in the top banner

Event code

J

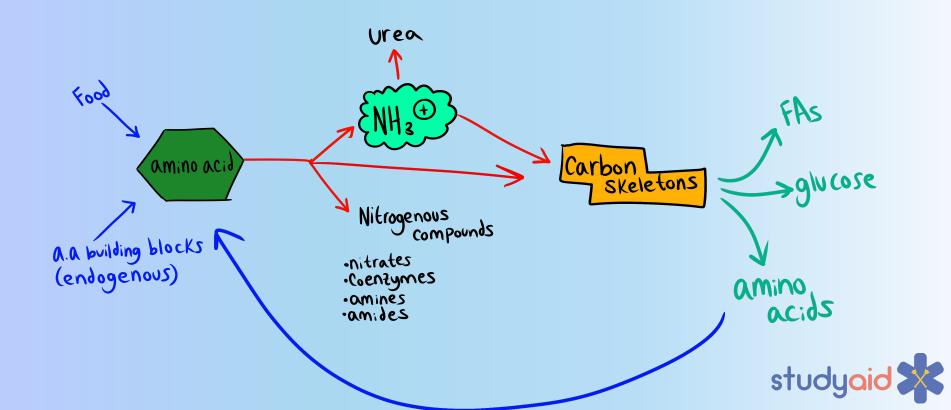
@ Copy participation link

The Urea Cycle

Me trying to learn the urea cycle for the 632nd time

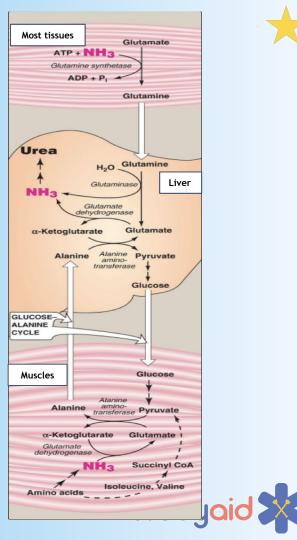
Table of contents:

- Digestion of amino acids
- Nitrogen cycling
- The urea cycle
- Hyperammonemia

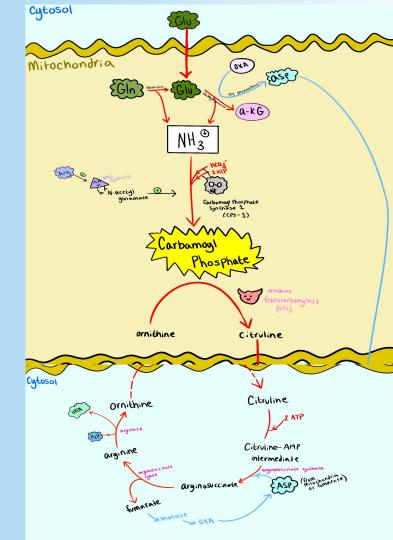


Digestion of amino acids

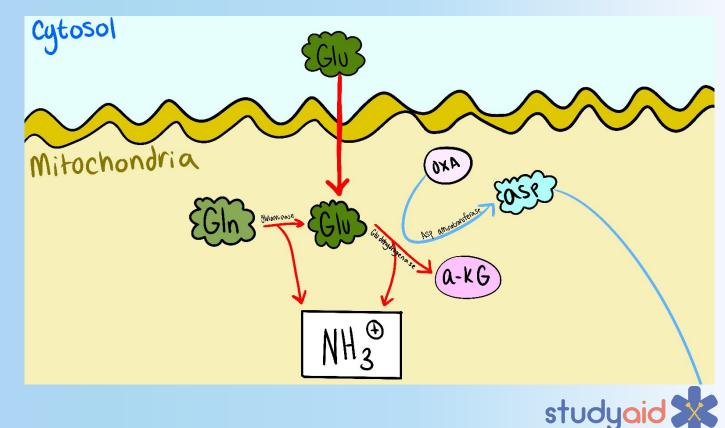
- Stomach:
 - HCl (hydrochloric acid): denatures proteins
 - Pepsin: releases amino acids from proteins
- Pancreas:
 - Enteropeptidase: activates trypsinogen \rightarrow trypsin to activate proteases
 - Proteases: cleaves polypeptides into amino acids & oligopeptides
 - CCK: mediates protease release
- Small intestine:
 - Aminopeptidase: cleaves nitrogen (N) terminal from oligopeptides
 - Absorbs free amino acids, di or tri peptides
 - Cystinuria:
 - Defective absorption of Cys, ornithine, Arg, Lys (COAL)
 - Aminoaciduria
 - Cys kidney stones
- Amino acid deamination



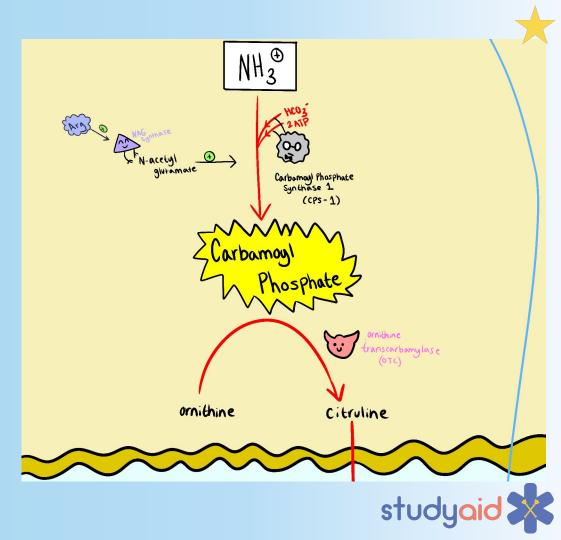
Nitrogen cycling: General


NC: Tissues, Liver, Muscles

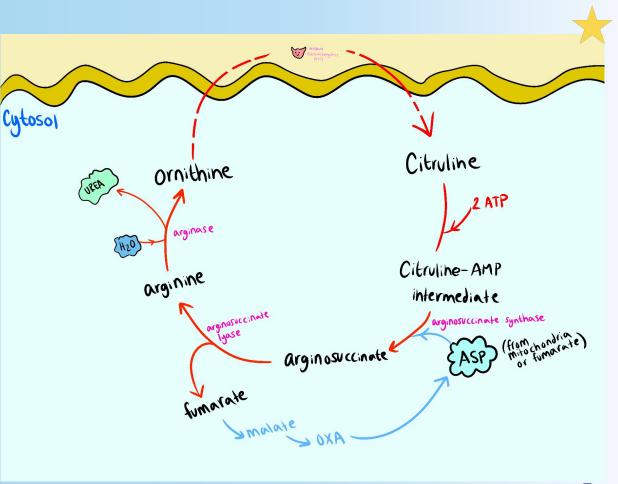
- Tissues and muscles make NH3, which is toxic and needs to be get rid of
- NH3 from tissues is transported via glutamine to the liver
- NH3 from muscles is transported via glucose-alanine cycle to the liver
- Liver turns NH3 into urea via urea cycle


What is the urea cycle?

- Detoxification method
- Converts ammonia (NH3, toxic) into urea (H2NCONH2, nontoxic)
- Happens in the liver ONLY
- Three most important enzymes:
 - Carbamoyl phosphate synthetase 1 (CPS-1)
 - Ornithine transcarbamylase (OTC)
 - Arginase


Urea cycle: Step 1

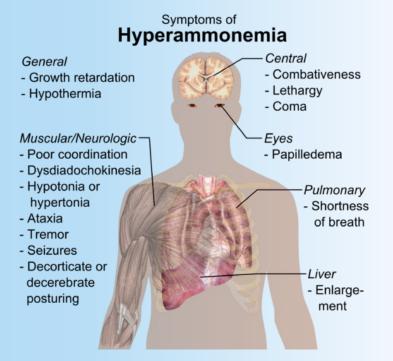
- Glutamate and glutamine release ammonia (NH3+)
- Aspartate is later used for urea cycle in cytosol


Step 2

- CPS-1 uses bicarbonate and ATP to make carbamoyl phosphate
- CPS-1 is activated by
 N-acetyl-glutamate, which is made by NAGs, which is activate by arginine
- Carbamoyl phosphate helps power
 OTC to turn ornithine into
 citrulline, two key urea cycle
 substrates in the cytosol

Step 3

- Citrulline + aspartate = argininosuccinate
- Argininosuccinate fumarate = arginine
- When converting arginine into ornithine, finally you make urea!
- Ornithine is converted back into citrulline inside the **mitochondria**



Hyperammonemia

- When you have too much ammonia in the blood
- Why? Defect in enzyme
- Types:
 - Type I: NAGS deficiency
 - Tx: Activate CPS-1 with carbamoyl-glutamate
 - Type II: CPS-I defect
 - Tx: Arginine
 - Type III: OTC defect
 - Most common
 - Increased orotic acid
 - Tx: Sodium benzoate

- Symptoms:
 - Vomiting
 - Ataxia
 - Seizures
 - Encephalopathy
 - Coma
- If not treated, can be fatal

Wooclap

Go to wooclap.com

Enter the event code in the top banner

@ Copy participation link