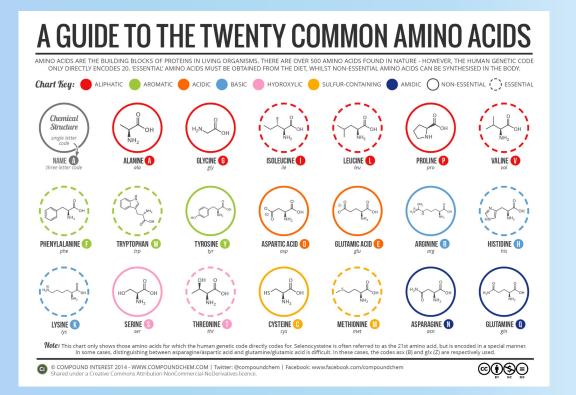
Amino Acid Metabolism & Urea Cycle

Karolina Orocz

Amino acid metabolism

Table of contents


- 1) Amino acid classifications:
 - a) Structures
 - b) Essential vs non-essential
 - c) Gluconeogenic vs ketogenic
- 2) General amino acid catabolism
- 3) Specific amino acid metabolisms & correlated diseases
- 4) Urea cycle

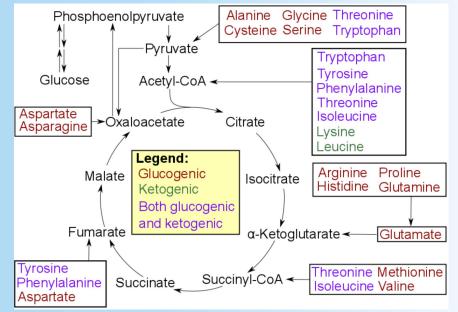
Amino acid classifications

Amino acid structures

Essential vs non-essential amino acids

10 essential amino acids: "PVT TIM HALL"

- PVT:
 - Phenylalanine
 - Valine
 - Tryptophan
- TIM:
 - Threonine
 - Isoleucine
 - Methionine
- HALL:
 - Histidine
 - Arginine
 - Leucine
 - Lysine


Glucogenic vs ketogenic amino acids

Glucogenic:

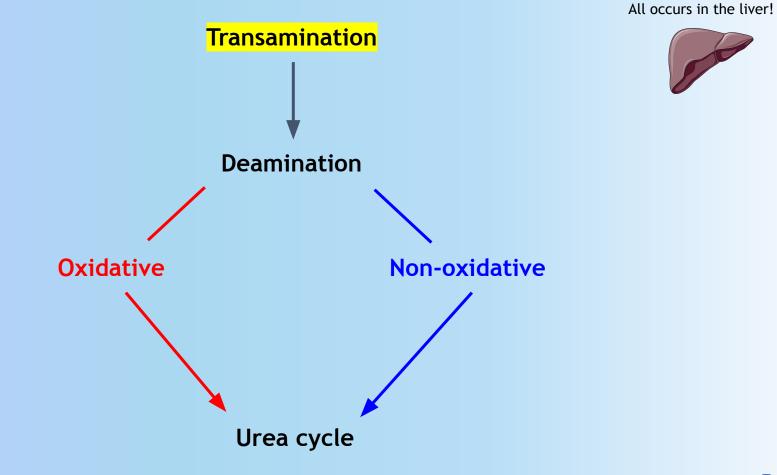
Can be converted into glucose via gluconeogenesis

Ketogenic:

Can be converted into acetyl-CoA in order to make ketone bodies

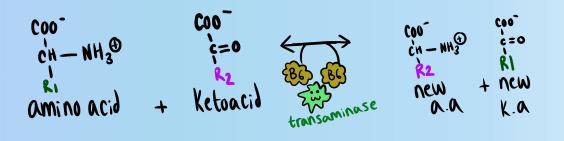
https://en.wikipedia.org/wiki/Glucogenic_amino_acid#/media/File:Amino_acid_catabolism_revised.png

Ketogenic a.a: "Ls"	BOTH: "PITTT"	Gluconeogenic a.a:
Leucine Lysine	Phenylalanine Isoleucine Tyrosine Tryptophan Threonine	Everything else


General amino acid catabolism

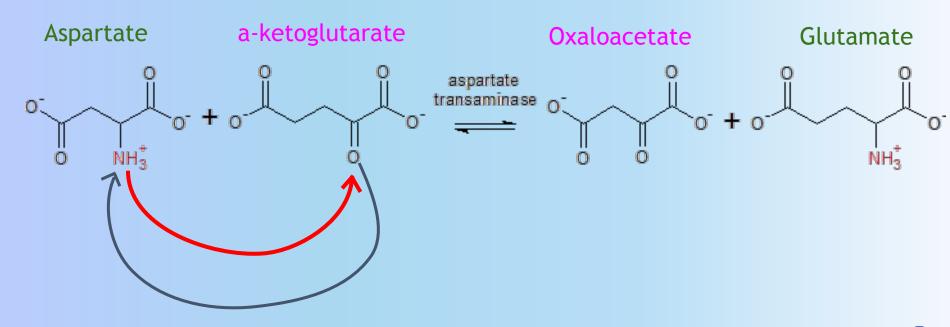
Definitions:

- 1) **Transamination:** Transfer of an amino group from an amino acid
- Deamination: Removal of an amino group from an amino acid, resulting with ammonia as a byproduct
- 3) Urea cycle: Neutralizes ammonia to be excreted as urea



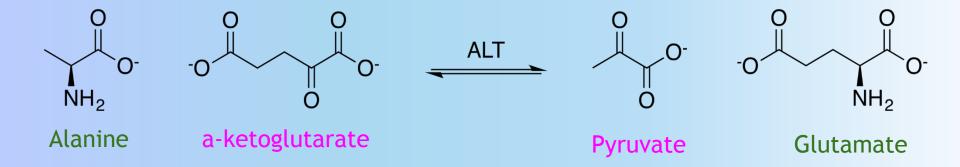
Transamination

- Transferring an amino acid's amino group (NH3+) to its partner keto acid to make a new amino acid
- Done via aminotransferases/transaminases
 - Vitamin B6 (PLP/pyridoxine) dependent
- Main focus: Make glutamate (especially will be important for oxidative deamination)


Examples of transamination

Serum glutamic oxaloacetic transferase (SGOT):

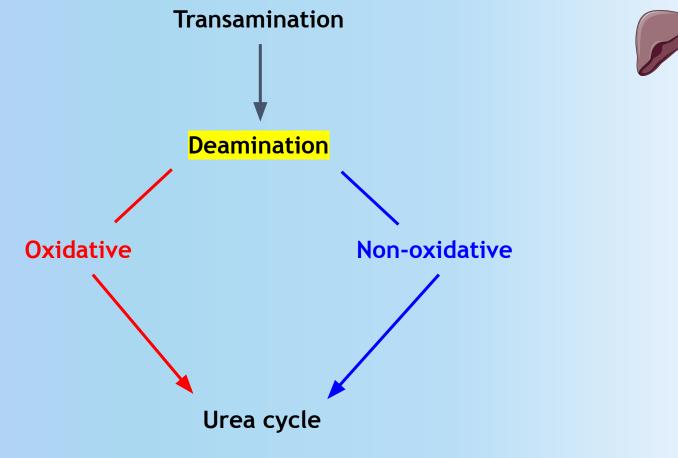
- Aka aspartate transferase (AST)
- Liver enzyme: Found in the hepatocyte cytosol and mitochondria


https://en.wikipedia.org/wiki/Aspartate transaminase#/media/File:Aspartate aminotransferase reaction.png

Serum glutamic pyruvic transferase (SGPT):

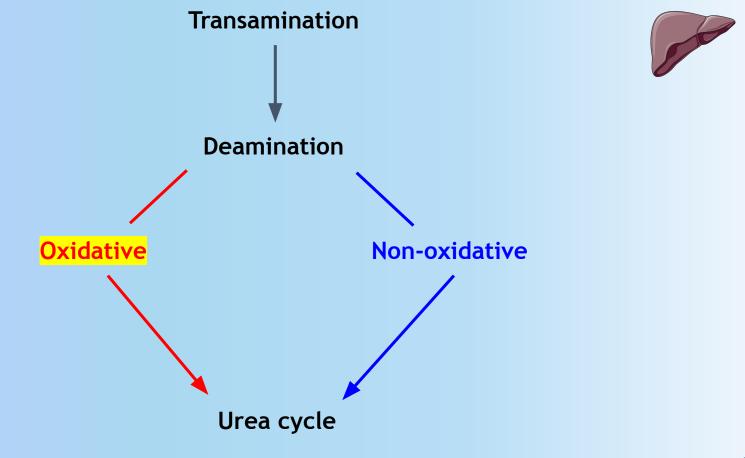
- Aka alanine transferase (ALT)
- Liver enzyme: Found in the hepatocyte cytosol

a-ketoglutarate + EALa ESCPT + RG SGPT + RG



https://en.wikipedia.org/wiki/Alanine_transaminase#/media/File:Alanine_transaminase.png

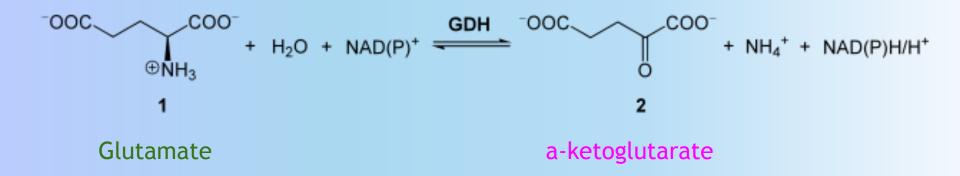
All occurs in the liver!



Deamination

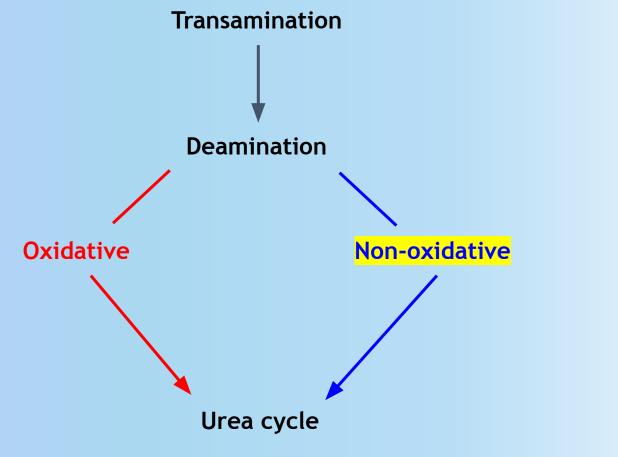
- Removal of an amino group from an amino acid
- Results in the release of ammonia
 - Ammonia is toxic, so must be neutralized via the urea cycle
- Occurs primarily in the liver, but also some in the kidney
- Two types:
 - Oxidative
 - $\circ \quad \text{Non-oxidative} \\$

All occurs in the liver!



Oxidative deamination

- Occurs with glutamate
- Oxidative: Glutamate donates a H+ to NADP+
- Enzyme: Glutamate dehydrogenase
- Products: alpha-ketoglutarate (keto acid), ammonia, & NADPH

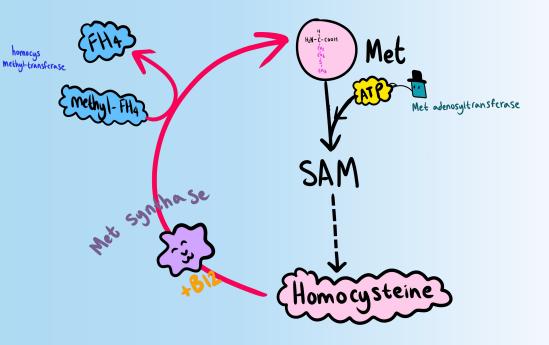


https://commons.wikimedia.org/wiki/File:Glutamate_dehydrogenase_reaction.svg

All occurs in the liver!

Non-oxidative deamination

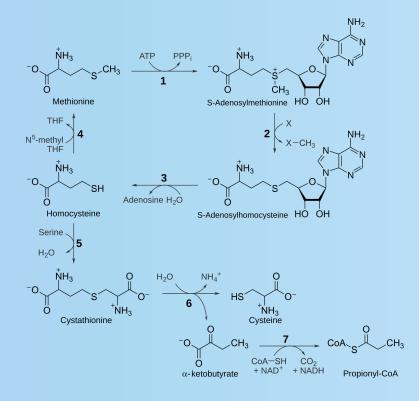
- Non-Oxidative: No donation of H+ is involved
- Serine:
 - Enzyme: Serine dehydratase/deanimase
 - Vitamin B6 (PLP/pyridoxine) dependent
- Threonine:
 - Enzyme: Threonine dehydratase/deanimase
 - Vitamin B6 (PLP/pyridoxine) dependent
- Products: Ammonia, a keto acid, and water



Specific amino acid metabolisms & correlated diseases

Methionine

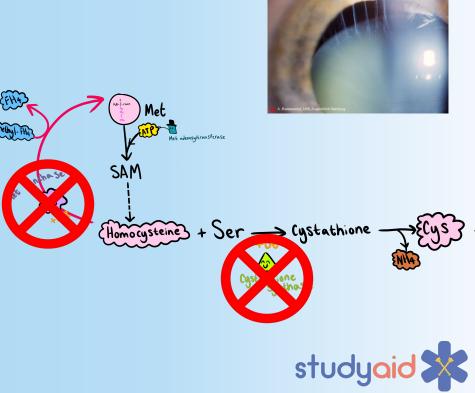
- Methionine: sulfur-containing, essential amino acid
- Methionine makes homocysteine, and homocysteine can be converted back into methionine
- SAM: S-adenosylmethionine
- Methionine synthase requires vitamin B12 (cobalamin)
 - During methionine synthase reaction, a methyl group is taken from methyl-FH4 and given to homocysteine; this results in FH4 (aka THF/tetrahydrofolate) as a byproduct



Homocysteine

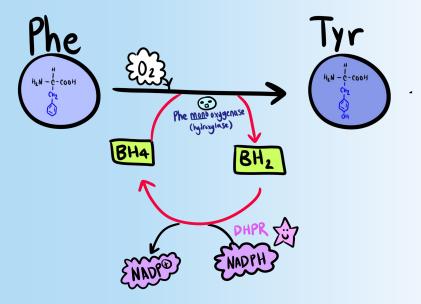
- Homocysteine can be converted into cystathionine and cysteine
- Cystathionine synthase is vitamin
 B6 (PLP/pyridoxine) dependent
- Cysteine: Sulfur-containing, non-essential amino acid

Methionine & homocysteine metabolism



By Hbf878 - Own work, Public Domain, <u>https://commons.wikimedia.org/w/index.php?curid=72891399</u>

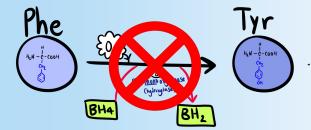
Clinical correlation: Homocystinuria


• General:

- Deficiency of methionine synthase or cystathionine synthase
- Homocysteine build up in blood & urine
- Symptoms:
 - Lens dislocation
 - Marfanoid habitus: Long limbs, pectus excavatum, etc...
 - Intellectual disability
- Tx:
 - Restriction of methionine intake
 - B6, B12, and/or folate supplementation

Phenylalanine

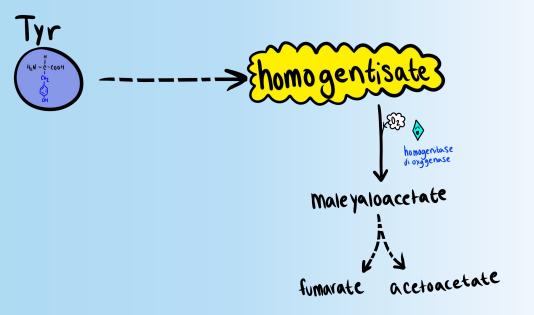
- Phenylalanine: Aromatic, essential amino acid
- Phenylalanine can be converted into tyrosine
- Phenylalanine
 - monooxygenase/hydroxylase is tetrahydrobiopterin (BH4) dependent
- BH4 is regenerated by the help of dihydropteridine reductase (DHPR)



Clinical Correlation: Phenylketonuria (PKU)

• General:

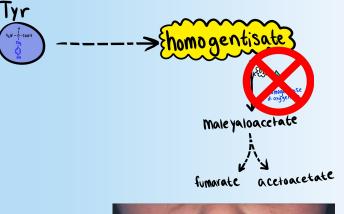
- Deficiency of phenylalanine monooxygenase/hydroxylase
- Can range from mild to severe deficiency
- Phenylalanine gets converted into phenylpyruvate (acid) instead of tyrosine
- Phenylalanine/phenylpyruvate build up in blood and urine
- Symptoms:
 - Musty urine odor
 - Less skin pigment: due to less tyrosine
 - Severe intellectual disability, developmental delay, microcephaly



- Tx:
 - Lifelong restriction of Phe

Tyrosine

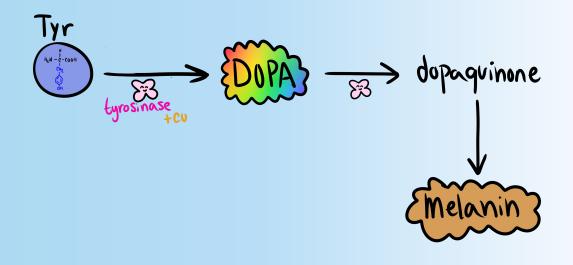
- Tyrosine: Aromatic, non-essential amino acid
- Homogentisate/homogentisic acid: intermediate catabolite of tyrosine & phenylalanine
- Homogentisate dioxygenase: converts homogentisate into maleylacetoacetate, which is later converted into fumarate & acetoacetate



Clinical Correlation: Alkaptonuria

• General:

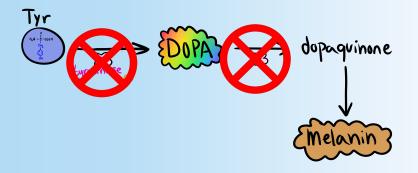
- Deficiency of homogentisate dioxygenase
- Homogentisate & tyrosine buildup in blood
 & urine
- Majority of symptoms start ~ age 40
- Symptoms:
 - Black, spotted pigment on skin and eyes
 - Black urine (due to aciduria)
 - Large joint arthritis
- Tx:
 - Restriction of tyrosine and phenylalanine



By Universidad CES - http://hdl.handle.net/123456789/464, CC B

Tyrosine

- Tyrosine makes melanin, a oligomer/polymer that provides pigment for skin and hair
- Enzyme: tyrosinase
 - \circ Is copper dependent

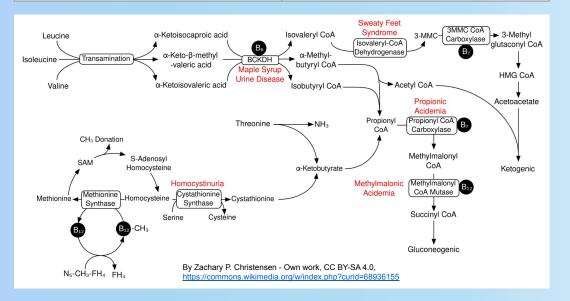


Clinical Correlation: Albinism

• General:

- Deficiency of tyrosinase
- Little or lack of melanin
- Inheritance: AR or X-linked
 - AR: Oculocutaneous & some ocular albinism types
 - X-linked: ocular albinism
- Symptoms:
 - Loss of skin, hair, & eye pigmentation
 - Vision defects
 - Increased risk of skin cancer

Karen Grønskov, Jakob Ek, and Karen Brondum-Nielsen: Oculocutaneous albinism Orphanet J Rare Dis. 2007; 2: 43. doi: 10.1186/1750-1172-2-43.



BCAAs

- Leucine, Isoleucine, Valine: Essential amino acids with an aliphatic side chain (only contains H or C)
- Are predominantly metabolized in the liver and skeletal muscles
- Products are substrates that can be used in the Krebs cycle (directly or indirectly)

BCAA: "I love Bailey's"	Product
Isoleucine	Acetyl-CoA, Propionyl-CoA/Succinyl-CoA
Leucine	Acetyl-CoA, Acetoacetate
Valine	Propionyl-CoA/Succinyl-CoA

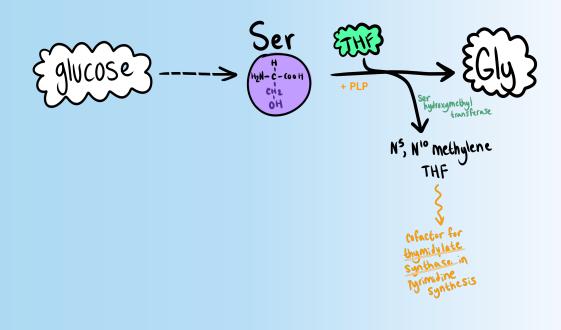
studyaid 🔀

Clinical Correlation: Maple Syrup Urine Disease

• General:

- Deficiency of BCKA dehydrogenase (BCKD)
- BCAAs & BCKAs build-up in the blood & urine
- Inheritance: AR
- Symptoms:
 - In Classic MSUD, onset of symptoms within 48 hrs of birth
 - Ketoacidosis
 - Neurotoxicity
 - "Maple syrup" odor of urine
 - Fatal if not treated
- Tx:
 - Restriction and close monitoring of BCAAs

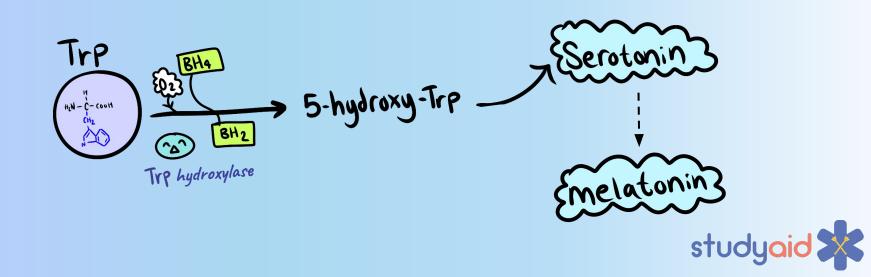
Summary


Disorder:	Cause:	Main symptoms:
Homocystinuria	 Deficiency of methionine synthase or cystathionine synthase Buildup of homocysteine 	 Lens dislocation Marfanoid habitus Intellectual disability
Phenylketonuria	 Deficiency of Phenylalanine monooxygenase/hydroxylase Buildup of phenylalanine and its metabolites 	 Musty urine odor Fair skin & hair Intellectual disability
Alkaptonuria	 Deficiency of homogentisate dioxygenase Buildup of homogentisic acid 	 Black spots on skin & eyes Black urine when exposed to air Arthritis
Albinism	 Deficiency of tyrosinase Lack of melanin 	 Loss of pigmentation Vision defects Increased risk of skin cancer
Maple syrup urine disease	 Deficiency of BCKA dehydrogenase Buildup of BCAA and BCKAs 	 Acidosis Sweet urine odor Neurotoxicity
-		0.009000

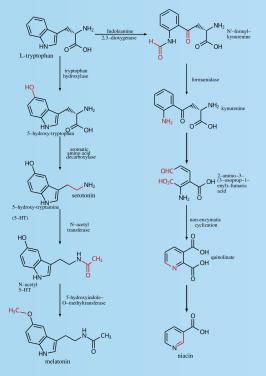
Extra amino acid metabolisms

Serine

- Serine: Hydroxylic (-OH), non-essential amino acid
- Gluconeogenic molecule
- Can be converted into glycine
- Enzyme: Serine hydroxymethyl transferase
 - Dependent on Vitamin B6 (PLP/pyridoxine)

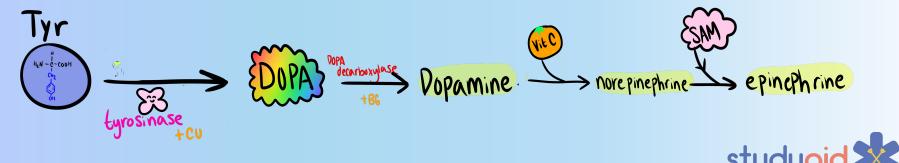


Tryptophan

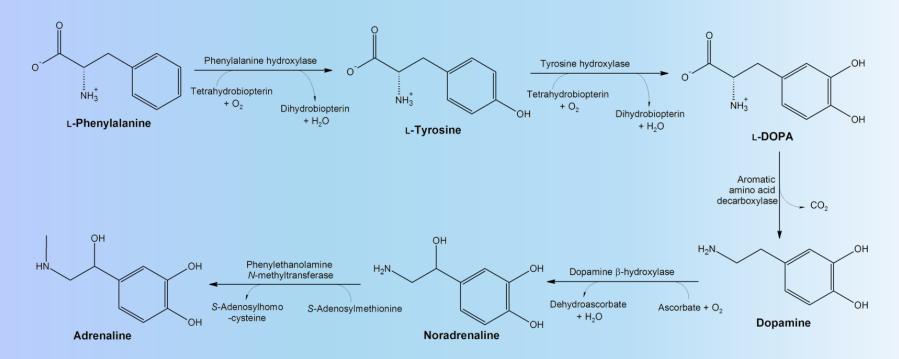

- Tryptophan: Aromatic, essential amino acid
- Tryptophan makes NAD & NADP
- Enzyme: Tryptophan dioxygenase

- Tryptophan makes serotonin & melatonin
- Enzyme: Tryptophan hydroxylase
 - Dependent on BH4 (tetrahydrobiopterin)

Tryptophan metabolism



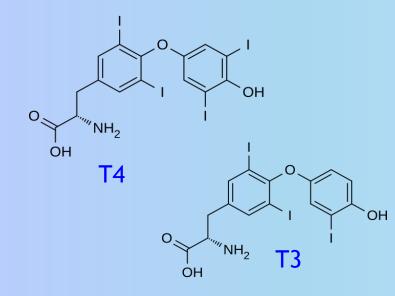
https://en.wikipedia.org/wiki/Trvptophan#/media/File:Trvptophan_metabolism.svg

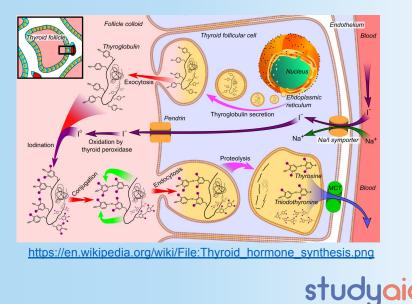


Tyrosine

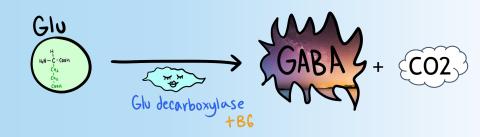
- Tyrosine: Aromatic, non-essential amino acid
- Tyrosine makes dopamine, norepinephrine, and epinephrine
- Dopamine & norepinephrine: neurotransmitters
 - Parkinson's disease: loss of dopamine-producing neurons in substantia nigra
 - Norepinephrine synthesis requires vitamin C
 - Scurvy: vitamin C deficiency
- Epinephrine: adrenal hormone involved in the sympathetic nervous system
 - Synthesis of epinephrine requires SAM (same SAM as in the methionine-homocysteine cycle)

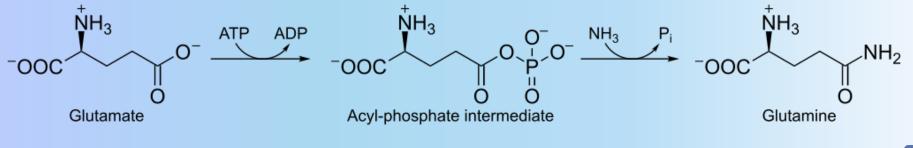
Phenylalanine/tyrosine metabolism




https://en.wikipedia.org/wiki/Tyrosine#/media/File:Conversion_of_phenylalanine_and_tyrosine_to_its_biologically_important_derivatives.png

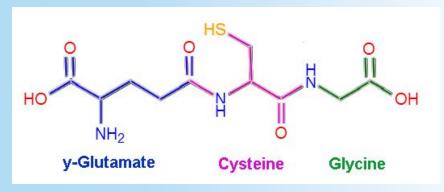
Tyrosine


- Tyrosine makes thyroid hormones
- Thyroglobulin: Carries tyrosine, in which tyrosines are then partnered with iodine to make thyroid hormones


Glutamate

- Glutamate: Acidic, non-essential amino acid
- Glutamate makes GABA
- GABA:
 - AKA y-aminobutyric acid
 - Inhibitory neurotransmitter in the central nervous system (CNS)
- Enzyme: Glutamate decarboxylase
 - Vitamin B6 (PLP/pyridoxine) dependent

- Glutamate can be converted into glutamine by adding a NH3+ to glutamate
- Enzyme: glutamine synthetase
- Especially important for uptaking excess ammonia (NH3) in astrocytes in the brain

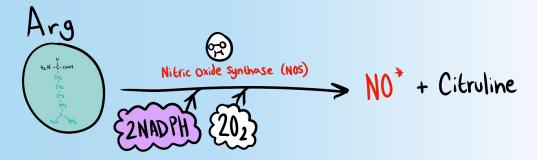


studyaid 🗙

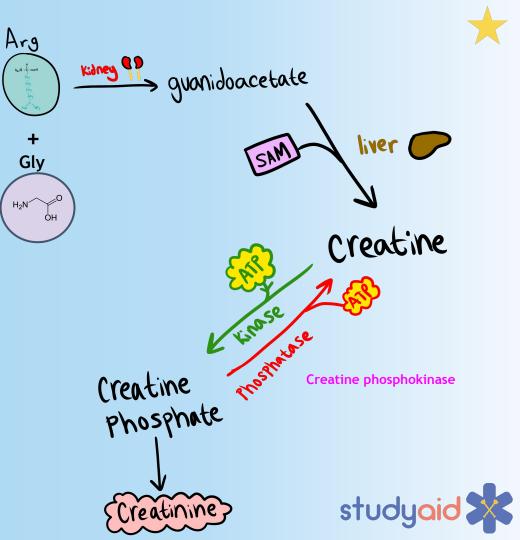
https://commons.wikimedia.org/wiki/File:Glutamine synthetase reaction.svg

Glutathione

- Glutathione:
 - Antioxidant
 - Re-oxidizes reduced glutathione in order to convert H2O2 (a reactive oxygen species) into H2O
- Glutamate + cysteine + glycine yields glutathione



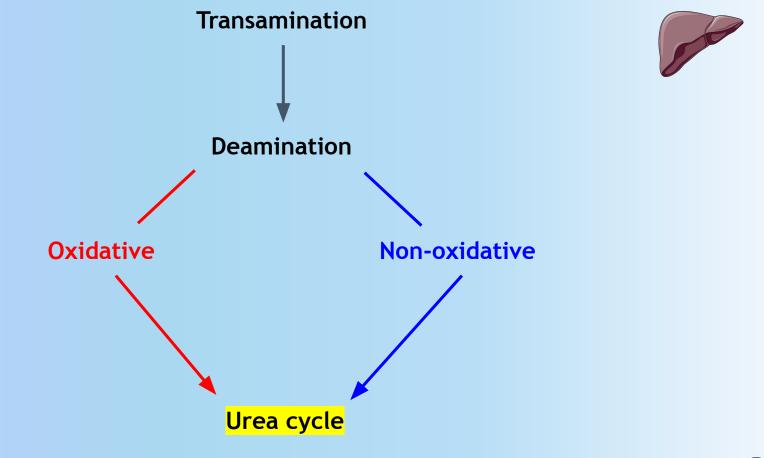
https://commons.wikimedia.org/wiki/File:Glutathione structure.png


Arginine

- Arginine: Basic, non-essential amino acid
- Arginine makes nitric oxide
- Nitric oxide (NO*): free radical
 - For vasodilation
 - For macrophage respiratory burst
- NOS enzyme:
 - nNOS: for neurons
 - iNOS: cytokine-inducible NOS
 - eNOS: for endothelial cells

- Arginine + glycine + methionine make creatine
- Creatine phosphate:
 - Stores phosphate, a very high energy molecule, in the muscles
 - We have enough ATP in the body? Make creatine phosphate!
 - Don't have enough ATP in the body?
 Break down creatine phosphate!
- Creatinine:
 - Waste product of the muscles
 - Kidneys filter our creatinine
 - Marker of kidney function
 - High creatinine in the blood means that kidneys are not filtering well

Molecule	Products
Methionine	- SAM - Homocysteine
Homocysteine	CysteineA-ketobutyrate
Tryptophan	 NAD + NADP Serotonin Melatonin
Phenylalanine	TyrosinePhenylpyruvate (acid in PKU)


Molecule	Products
Tyrosine	 Homogentisate DOPA Melanin Dopamine Norepinephrine Epinephrine Thyroid hormones
BCAAs	 Branched chain keto acids Acyl-CoA derivatives
Arginine	 Nitric oxide Creatine & creatinine

Urea Cycle

All occurs in the liver!

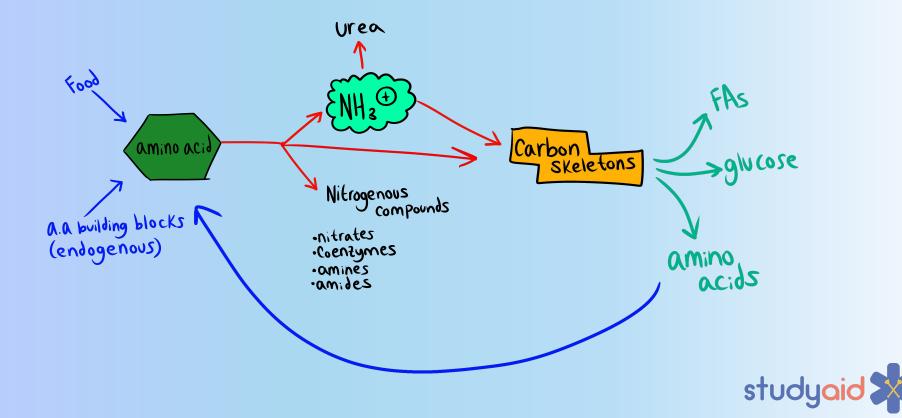
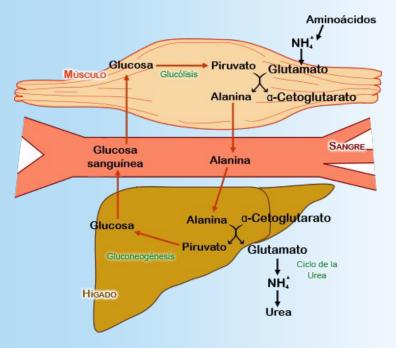


Table of contents:

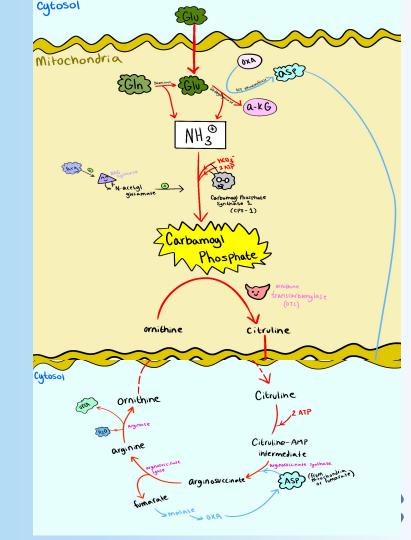
- 1) Nitrogen cycling
- 2) Urea cycle
- 3) Hyperammonemia



Nitrogen cycling: General

NC: Cahill Cycle

- Tissues and muscles make ammonia (NH3/NH4+), which is toxic and needs to be get rid of
- NH3 from muscles is transported via alanine to the liver
- Alanine lets go of NH3 and turns into pyruvate
 - Liver turns NH3 into urea via urea cycle, which is then excreted by the kidneys
 - Pyruvate can be turned into glucose via gluconeogenesis and used as energy in the muscle

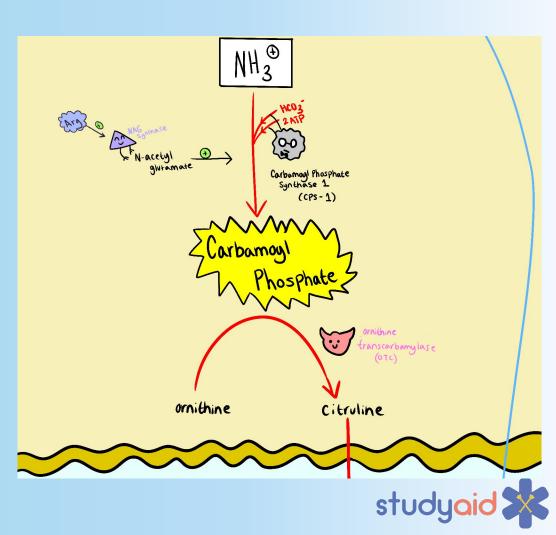


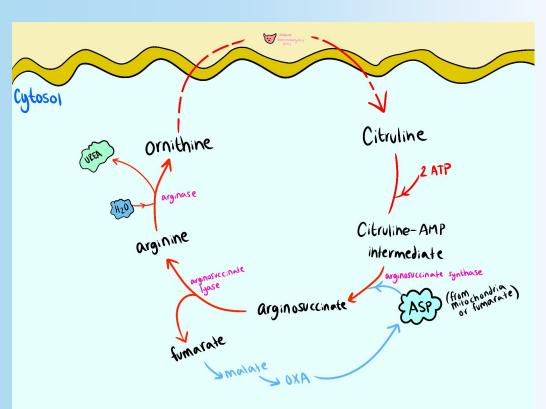
By CoriCycle-noLang.svg: PatriciaRderivative work: BiobulletM (talk) - CoriCycle-noLang.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10568590

What is the urea cycle?

- Detoxification method
- Converts ammonia (NH3/NH4+, toxic) into urea (H2NCONH2, nontoxic)
- Only occurs in the liver
- Three most important enzymes:
 - Carbamoyl phosphate synthetase 1 (CPS-1)
 - Ornithine transcarbamylase (OTC)
 - Arginase

Urea cycle: Step 1


- Glutamate and glutamine release ammonia (NH3+)
- Aspartate is later used when the urea cycle occurs in cytosol


Urea cycle: Step 2

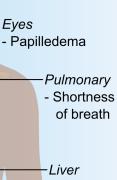
- CPS-1 uses bicarbonate and ATP to make carbamoyl phosphate
- CPS-1 is a rate limiting enzyme
- CPS-1 is activated by N-acetyl-glutamate, which is made by N-acetyl-glutamate synthase (NAGS), which is activate by arginine
- Carbamoyl phosphate helps power OTC by turning ornithine into citrulline, two key urea cycle substrates in the cytosol

Urea cycle: Step 3

- Citrulline + aspartate = argininosuccinate
- Argininosuccinate fumarate = arginine
 - Fumarate can be converted back into aspartate via krebs cycle (fumarate to oxaloacetate) and via glutamate oxaloacetate transaminase (oxaloacetate to aspartate)
- When converting arginine into ornithine, finally you make urea!
- Ornithine is converted back into citrulline via ornithine transcarbamylase inside the mitochondria

Clinical Correlation: Hyperammonemia

- When you have too much ammonia in the blood
- Primary causes (ex: enzyme deficiency) or secondary (ex: hepatic cirrhosis)
- Primary causes:
 - NAGS deficiency
 - CPS-I defect
 - **OTC** defect
 - Most common
 - Increased orotic acid
 - Tx: Sodium benzoate (nitrogen scavenging agent)


• Symptoms:

- Vomiting
- Ataxia
- Seizures
- Encephalopathy
- Coma
- If not treated, can be fatal

Symptoms of **Hyperammonemia**

General - Growth retardation - Hypothermia Muscular/Neurologic - Poor coordination - Dysdiadochokinesia - Hypotonia or

- hypertonia
- Ataxia
- Tremor
- Seizures
- Decorticate or decerebrate posturing

Central

- Coma

- Lethargy

- Combativeness

- Enlargement

studyaid

By Mikael Häggström https://commons.wikimedia.org/w/index.php?curid=6703007

