# **Protein biosynthesis**

(Transcription + translation)

By Herman Mageli



#### **Overview**

Transcription Posttranscriptional modifications The genetic code Translation Posttranslational modifications





#### DNA vs. RNA

|             | DNA             | RNA             |
|-------------|-----------------|-----------------|
| Length      | Longer          | Shorter         |
| Composition | Deoxyribose     | Ribose          |
| Strands     | Double stranded | Single stranded |
| Bases       | Thymine         | Uracil          |







# **RNA**

| rRNA                                  | tRNA                                              | mRNA                                                          |
|---------------------------------------|---------------------------------------------------|---------------------------------------------------------------|
| Ribosome<br>Ribosomal RNA             |                                                   |                                                               |
| Most <b>abundant</b><br>80% total RNA | <ul><li>15% of all RNA</li><li>Smallest</li></ul> | <ul><li> 5% of all</li><li> Carry genetic info from</li></ul> |

- Prokaryotes: 23S, • 16S, 5S
- Eukaryotes: 18S, 28S, • 5.8S, 5S

- nucleus to cytosol
- Polycistronic vs. • Monocistronic



#### Transcription

- «The copying process during which a DNA strand serve as a template for the synthesis of RNA»
- Copying a DNA into mRNA strands
  - Used to produce **aminoacid chains** in cytoplasm
- Occur in 3 phases
  - 1. Initiation
  - 2. Elongation
  - 3. Termination



## **RNA** polymerase

- RNA strand → RNA polymerase
  - 5´3´ polymerase activity
    - > Attach to 3<sup>'</sup>-end of DNA and **DRIVE to FIVE**
- NO primer, NO proofreading activity
- ONLY 1!!
  - Create all RNA in prokaryotes



- 3 types
  - 1. RNA pol. I
  - 2. RNA pol. II
  - 3. RNA pol. III











#### Structure of RNA polymerase

- Core enzyme
  - 4 subunits
  - Subunits complete the maschinery
- Sigma factor
- Holoenzyme : core enzyme + sigma factor



#### Transcription

Initiation
 Elongation
 Termination







#### 1. Initiation

• Holoenzyme recognize promoter region: 2 sequences

#### 1. -35 sequence

- 5´- TTGACA -3´
- Closed complex

#### 2. Pribnow box

- 5´-TATAAT-3´
- Site of initial DNA melting
  - > **OPEN** complex
  - Transcription bubble











## 2. Elongation

100

- As unwinding continues, supercoils are formed
  - Removed by **DNA topoisomerases**
- 10 nucleotide length
  - Sigma factor dissociates
  - DNA-RNA hybrid helix



#### 3. Termination

- 2 types
  - 1. p-Independent
    - Most common
    - Self-complimentary strand form hairpin-loop
    - GC-rich stem
  - 2. p-Dependent
    - Protein rho(p)
    - ATPase with helicase activity
    - Binds C-rich region on RNA 5'-end
      - > Move with ATPase activity to termination site
      - Helicase activity to cut out.





### **Eukaryotic transcription**

- More complicated!
  - 3 instead of 1 RNA polymerase!
    - > One for each RNA type
  - Transcription factors (TFs)
    - Assemble transcription comlex
    - > Melt DNA
    - Bind promoter region



> Each RNA polymerase has **its own** transcription factors and promoters

| RNA polymerase I   | Synthesize precursor to the 28S, 18S, 5.8S <b>rRNA</b>                                   |
|--------------------|------------------------------------------------------------------------------------------|
| RNA polymerase II  | Synthesize precursor of <b>mRNA</b><br>Also small noncodingRNA (snRNA, snoRNA,<br>miRNA) |
| RNA polymerase III | Synthesize <b>tRNA</b> and 5S rRNA<br>Also synthesize some snRNA and snoRNA              |





# **RNA polymerase II**

- Produce mRNA
- Sequences acts as binding sites for TFs
- 2 sequences in promotor region:
  - 1. TATA/Hogness box
    - Almost identical to Pribnow (TATAAT)
    - Full sequence: TATAAA
    - -25
  - 2. CAAT box
    - 70-80 nucleotides upstream







3. **TFIIH:** Helicase activity that melts the DNA and phosphorylates polymerase





#### **Antibiotics and inhibitors**



| Rifampin Antibiotic          | <ul> <li>Bind to b-subunit of prokaryotic RNA polymerase</li> <li>Tuberculosis</li> </ul>                                                                  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dactinomycin (actinomycin D) | <ul> <li>Bind DNA template → interfere with movement<br/>of RNA polymerase along the DNA</li> <li>Tumor chemotherapy</li> </ul>                            |
| Alpha-amanitin               | <ul> <li>Toxin produced by the mushroom Amanite phalloides («death cap»)</li> <li>Form a tight complex with RNA pol.II → inhibit mRNA synthesis</li> </ul> |
| Streptomycin Antibiotic      | <ul> <li>Bind 30S subunit → Inhibit translational initiation</li> </ul>                                                                                    |



#### **Overview**

Transcription Posttranscriptional modifications The genetic code Translation Posttranslational modifications





#### Posttranscriptional modifications

- Initial product = **«primary transcript**»
- Both prokaryotic and eukaryotic rRNA and tRNA are cleaved by ribonucleases
- In prokaryotes, mRNA is almost identical to primary transcript mRNA
- In eukaryotes, mRNA is extensively modified.

|                   | rRNA                                                                                                       | tRNA                                                                                                                   |
|-------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Origin            | <ul> <li>16S, 28S etc. Are ALL generated<br/>from a long precursor molecule<br/>that is cleaved</li> </ul> | Also made from longer precursor molecules that are cleaved                                                             |
| Introns           |                                                                                                            | <ul> <li>Noncoding regions of RNA that<br/>may be present. If so, they are<br/>removed by <b>nucleases</b>.</li> </ul> |
| -CCA ending added |                                                                                                            | <ul> <li>Added on 3´-end by<br/>nucleotidyltransferase</li> </ul>                                                      |



#### **Pre-mRNA modifications**

- 1. 5<sup>'</sup>-capping
- 2. Addition of a poly-A tail
- 3. Removal of introns







- It is a 7-methylguanosine attached «backwards» to the 5<sup>'</sup>-end of premRNA»
  - This create a 5'-5' linkage
- Goal:
  - Stabilize mRNA
  - Allows initiation phase of translation





#### AAAA **Poly-A tail addition** Poly-A tail

- It is a series of 40-200 adenine (A) nucleotides added to the end of ulletpre-mRNA
- Goal:

5' cap

- Stabilize mRNA \_
- Facilitate exit from nucleus
- Aid in translation -

(During transcription)

5' End: Receives a nice cap 3' End:





# Removal of introns Poly-A tail

- Introns: sequences of RNA that do NOT code for proteins
- Exons: remaining sequences, joined together
- Splicing: the process of removing introns and joining exons
  - Occur in **spliceosome**
- **snRNA** = «snurps»

5' cap

- Facilitate removal of introns





#### **Overview**

Transcription Postranscriptional modifications The genetic code Translation Posttranslational modifications





#### The genetic code

- A «dictionary that identifies correspondence between nucleotide bases and amino acids»
  - 4 letters: A (adenine), G (guanine), C (cytosine), and U (uracil)
- Three letters form **«codons»**.
- These codons represents certain amino acids





#### Codons

**U** Are Gone

**U** Go Away

**U** Are Away

study

- «Codons» are present in mRNA
  - They are 3 base pairs
- Start codon: AUG = methionine
- Stop codons: at the end, stop the translation = UAG, UGA, UAA (don't code for amino acids)
- ALWAYS read 5'-3' unless specifically written otherwise
  - AUG = 5'-AUG-3'



#### Degenerative genetic code

- 4 letters (A,G,C,U)
- We have **4^3 combinations** = 64.
  - 20 amino acids in total
    - One amino acid can be coded for by several codons



![](_page_25_Picture_6.jpeg)

#### Vocabulary of the genetic code

| Specificity (unambigous)    | A codon only code for <b>ONE</b> amino acid                                                  |  |
|-----------------------------|----------------------------------------------------------------------------------------------|--|
| Degeneracy (redundant)      | An amino acid may have <b>several codons</b> representing it                                 |  |
| Universality                | Code is <b>equal</b> in all organisms<br>→ <b>AUG</b> means methionine for me and<br>for you |  |
| Non-overlapping             | Code is read three bases at the time, without any overlap or commas                          |  |
| • AGC/UGG/AUA/: AG,CU,GGAUA |                                                                                              |  |

![](_page_26_Picture_2.jpeg)

#### **Overview**

Transcription Posttranscriptional modifications The genetic code Translation Posttranslational modifications

![](_page_27_Picture_2.jpeg)

![](_page_27_Picture_3.jpeg)

#### tRNA

- The job of tRNA is to Transport AA!
- Anticodon vs. Codon
- tRNAs carry amino acids
  - Aminoacyl-tRNA synthetase (ATP $\rightarrow$ AMP)
  - Attached to the 3'-end (ester bond)
- tRNA with attached AA = charged tRNA
  - No amino acid = uncharged tRNA

![](_page_28_Figure_8.jpeg)

### Wobble hypothesis

- 50 tRNAs for 61 codons...
- I base

![](_page_29_Figure_3.jpeg)

![](_page_29_Picture_4.jpeg)

#### Ribosomes

- Complexes of proteins and ribosomal RNA (rRNA)
- A ribosome consist of **2 subunits**: small and large
- Prokaryotes: **30S** + **50S** = **70S** 
  - prOkaryotes are Odd
- Eukaryotes: 40S + 60S = 80S
- Site of translation!

![](_page_30_Figure_7.jpeg)

![](_page_30_Picture_8.jpeg)

#### **Ribosomes - APE**

![](_page_31_Figure_1.jpeg)

# TRANSLATION - translating mRNA into polypeptide chain

- 1. Initiation
- 2. Elongation
- 3. Termination

• Aiding factors: (e)IF, (e)EF, (e)RF

![](_page_32_Picture_5.jpeg)

![](_page_32_Picture_6.jpeg)

#### 1. Initiation

#### Assemble!

- Ribosomal subunits
- mRNA
- Aminoacyl-tRNA
- GTP
- Initiation factors
- Small subunit bind mRNA
  - Prokaryotes:
    - Shine-Dalgarno
  - Eukaryotes:
    - 5´-CAP
    - «Scanning»:  $5' \rightarrow 3'$
    - ATP
- Upon reaching AUG:
  - Unique initator tRNA recognize
  - Facilitated by eIF-2-GTP
  - Charged tRNA enter P!!

![](_page_33_Figure_18.jpeg)

![](_page_33_Picture_19.jpeg)

#### 2. Elongation

![](_page_34_Figure_1.jpeg)

## 2. Elongation

- The ribosome works like a **clamp** reading  $5' \rightarrow 3'$
- Adding AA via **aminoacyl-tRNA** (GTP  $\rightarrow$  GDP)
  - A site
  - Remember that P is already occupied from initiation phase!
- Synthesize from **N-terminal** 
  - New strands are attached to the carboxyl group of the previous AA
  - Polypeptide chain in P «jumps» to A
- Peptide bonds linked by peptidyl transferase
  - Large subunit
  - Ribozyme
- **Translocation:** GTP  $\rightarrow$  GDP

![](_page_35_Figure_12.jpeg)

![](_page_35_Picture_13.jpeg)

#### 3. Termination

- STOP codon enters A site
- Release factors
  - Prokaryotes:
    - ✤ RF-1: UAA, UAG
    - ✤ RF-2: UAA, UGA

![](_page_36_Figure_6.jpeg)

- Eukaryotes:
  - ✤ eRF: all 3 codons
- Binding of release factors cause release of polypeptide chain!

![](_page_36_Picture_10.jpeg)

#### **Overview**

Transcription Posttranscriptional modifications The genetic code Translation Posttranslational modifications

![](_page_37_Picture_2.jpeg)

![](_page_37_Picture_3.jpeg)

#### **Posttranslational modifications**

- Polypeptide chain (PP) is **NOT** a protein!!
- May also arise during translation = cotranslational modification
- Some types of posttranslational modifications:
- 1. Trimming
  - 2. Phosphorylation
  - 3. Glycosylation
  - 4. Protein folding

![](_page_38_Picture_8.jpeg)

![](_page_38_Picture_9.jpeg)

# Trimming & phosphorylation

#### • Trimming:

- , Initially large precursor molecules Endoproteases
- Zymogens

#### Phosphorylation

- ATP + protein = phosphoprotein + ADP
- Serine, threonine, tyrosine
- Kinases/phosphatases

![](_page_39_Figure_8.jpeg)

![](_page_39_Picture_9.jpeg)

## **Glycosylation and protein folding**

- Adding carbohydrates
- Proteins entering plasma membrane or leaving cell
- 2 types:
  - 1. O-glycosylation: HydrOxyl group of serine and threonine
    - G<mark>O</mark>lgi
  - 2. N-glycosylation: amide group of asparagiNe
    - ER
- Protein folding:
  - To assume functional state
  - Spontaneous or chaperons

![](_page_40_Picture_11.jpeg)

studyc

# Targeting

#### Cytoplasmic ribosomes

- Mitochondria, Nucleus, Cytosol, Peroxisomes
  - «Targeting sequence»
  - Cleaved upon arrival

#### **RER ribosomes**

- N-Hydrophobic signal sequence and SRP
- Plasma, ER, Golgi, lysosomes
- Travel in vesicles to cis-face of Golgi apparatus
  - Return to RER
  - Stay inside golgi
  - Leave via trans-face

![](_page_41_Picture_12.jpeg)

![](_page_41_Picture_13.jpeg)