Neuromuscular Junction

What is the neuromuscular junction?

Neuron "talk" to muscle

How is the neuronal electrical <u>message</u> translated into a muscular action?

- Electrical signal (AP) -> chemical signal (messenger)-> Electrical signal(AP)
- Chemical messenger: Acetylcholine A
- One way communication

ACETHYLCHOLINE

ACETYL CoA + Choline = ACETHYLCHOLINE (Acetate)

- Acetyl CoA is produced by mitochondria in the nerve ending
- Choline transported from extracellular space

Acetylcholine (Cholinergic)

- Nicotinic somatic (skeletal muscle)
- Muscarinic relating to autonomic (parasympathetic) system

Skeletal Muscle is regulated by Nicotinic Cholinergic receptors

SYNAPTIC CLEFT - Choline Acetate Na+ Choline AChF Action Potential Depolarization K+ Na+ Ca_{2+}

Presynaptic Nerve Terminal

Motor End Plate

Activity in Motor End Plate

- The amount of ACh in a single vesicle is a quantum
 - The amount of change in membrane by a quantum is a **miniature end plate potential (MEPP)**
 - Approximately 0.4 mV change

- MEPPs summate to cause End Plate Potential (EPP)
 - Requires a change from about -90 mV to -50 mV

Putting Things in Perspective

4 mV

20 mV

Neuromuscular transmission

1. AP (electrical signal) depolarizes nerve ending

1. Voltage-gated Ca2+ channels open = Calcium influx

1. Ca allows release of neurotransmitter **Acetylcholine** (chemical signal)

1. ACh activate Nicotinic Cholinergic receptors

2. Na influx – EPP

- 3. EPP stimulate voltage gated Na+ -channels
 - 4. AP (electrical signal)

Toxins, Disruptions, Fluctuations

Botulinus Toxin

Ca2+

Complete blockage of ACh release (synaptic transport)

Action Potential

Presynaptic Nerve Terminal Motor End Plate

Suxamethonium chloride

Inhibitor of Postsynaptic Depolarization

Presynaptic Nerve Terminal Motor End Plate

Presynaptic Nerve Terminal Motor End Plate

SYNAPTIC CLEFT

Presynaptic Nerve Terminal

Motor End Plate

Thank you 🙂

Sample Q

- Which of the following is responsible for the undisturbed transmission of the signal between the pre synaptic nerve terminal and the MEP of a muscle fiber?
 - A. Adrenergic cholinergic
 - B. Musarinic adrenergic
 - C. Nicotinic adrenergic
 - D. Nicotinic cholinergic
 - E. Nicotinic acetylcholine
 - F. D and E are correct
 - G. A is incorrect, C is correct, E is correct sometimes

Sample Q

Botulinum toxin, derived from the clostridium species, exerts its inhibitory function on NMJ activity through which of the following mechanisms?

- A. Prevents ACh release
- B. Interacts with the SNARE protein and disallows proper function of exocytosis of vesicles
- C. Binds to curare and inhibits ACh
- D. C is incorrect
- E. None of the options are correct, except C

Sample Q

Magnesium ions disrupts NMJ activity through which of the following mechanisms?

- A. Competes with Ca2+ release
- B. Inhibits postsynaptic depolarization
- C. Binds to Na+ ligand gated channel
- D. A is not incorrect
- E. A and D are not wrong

