MUSCLE CONTRACTION

Myosin compromises the thick filaments

- Consist of six polypeptide chains
 - One pair heavy chains
 - Two pairs light chains

The head binds actin and ATP

- Actin has myosin-binding sites
- At rest the binding sites are blocked by tropomyosin
 - For contraction to occur tropomyosin must be moved out of the way
- Troponin consist of three proteins
 - Troponin T
 - Troponin I
 - Troponin C

- Thick and thin filaments may overlap in the A band
 - Potential sites of cross-bridge formation
- I bands contain thin filaments, filamentous proteins and Z-disks
- Z-disks is the border of each sarcomere

CYTOSKELETAL PROTEINS

- Dystrophin binds to actin and anchors myofibrils to cell membrane
- Titin binds thick filaments to Zdisks
- Nebulin sets the length of actin molecules
- α-Actinin anchors thin filaments to Z-disks

EXCITATION-CONTRACTION COUPLING IN SKELETAL MUSCLE

- T-tubules carry depolarization
 - Dihydropyridine receptor is activated
- Ryanodine receptors in SR opens, releasing Ca²⁺
- Ca²⁺ binds to troponin C
 - Tropomyosin to moves out of the way

EXCITATION-CONTRACTION COUPLING IN SKELETAL MUSCLE

- T-tubules carry depolarization
 - Dihydropyridine receptor is activated
- Ryanodine receptors in SR opens, releasing Ca²⁺
- Ca²⁺ binds to troponin C
 - Tropomyosin to moves out of the way

RELAXATION

- Ca²⁺ reaccumulates in SR by Ca²
 ATPase (SERCA)
- In SR Ca²⁺ is bound to calsequestrin

 The binding to calsequestrin results in a low amount of free Ca²⁺ in SR

RIGOR MORTIS

- What is rigor mortis?
 - Stiffness of death
- Why are the muscles in the rigor position?
 - Because there is no ATP for Ca²⁺
 ATPase to use
- Why doesn't the myosin head move from the rigor position?
 - Because there is no ATP to bind to the myosin

TYPES OF SMOOTH MUSCLE

Unitary

- Found in:
 - GI
 - Bladder
 - Uterus
 - Ureter
- Linked by gap junctions
- Pacemaker activity, or slow waves

Multiunit

- Found in:
 - Iris
 - Ciliary muscles
 - Vas deferens
- Little or no coupling
- Parasympathetic/sympathetic nervous system regulate function

EXCITATION-CONTRACTION COUPLING IN SMOOTH MUSCLE

- Depolarization opens Ca²⁺ channels in membrane
- IC Ca²⁺ binds to calmodulin
 - Ca²⁺-calmodulin complex activates myosin-light-chain kinase
- Phosphorylated myosin binds to actin to form cross-bridges
- IC Ca²⁺ decreases
 - Myosin-light-chain phosphatase

Ca²⁺ CHANNELS AND RECEPTORS

- Voltage-gated Ca²⁺ channels
- Ligand-gated Ca²⁺ channels
- IP₃-gated SR Ca²⁺ channels

BLE 1-3 Comparison of Skeletal, Smooth, and Cardiac Muscle

Feature	Skeletal Muscle	Smooth Muscle	Cardiac Muscle
Appearance Upstroke of action potential	Striated Inward Na+ current	No striations Inward Ca ²⁺ current	Striated Inward Ca ²⁺ current (SA node) Inward Na ⁺ current (atria,
Plateau	No	No	ventricles, Purkinje fibers) No (SA node) Yes (atria, ventricles, Purkinje fibers; due to inward Ca ²⁺ current)
Duration of action potential	~1 msec	~10 msec	150 msec (SA node, atria) 250–300 msec (ventricles and Purkinje fibers)
Excitation- contraction coupling	Action potential → T tubules Ca²+ released from nearby SR ↑ [Ca²+],	Action potential opens voltage-gated Ca ²⁺ channels in cell membrane Hormones and transmit- ters open IP ₃ - gated Ca ²⁺ channels in SR	Inward Ca ²⁺ current during plateau of action potential Ca ²⁺ -induced Ca ²⁺ release from SR ↑ [Ca ²⁺] _i
Molecular basis for contraction	Ca2+_troponin C	Ca²+-calmodulin ↑ myosin light-chain kinase	Ca2+-troponin C

IP₃ = inositol 1,4,5-triphosphate; SA = sinoatrial; SR = sarcoplasmic reticulum.

