MUSCLE CONTRACTION Myosin compromises the thick filaments - Consist of six polypeptide chains - One pair heavy chains - Two pairs light chains The head binds actin and ATP - Actin has myosin-binding sites - At rest the binding sites are blocked by tropomyosin - For contraction to occur tropomyosin must be moved out of the way - Troponin consist of three proteins - Troponin T - Troponin I - Troponin C - Thick and thin filaments may overlap in the A band - Potential sites of cross-bridge formation - I bands contain thin filaments, filamentous proteins and Z-disks - Z-disks is the border of each sarcomere #### CYTOSKELETAL PROTEINS - Dystrophin binds to actin and anchors myofibrils to cell membrane - Titin binds thick filaments to Zdisks - Nebulin sets the length of actin molecules - α-Actinin anchors thin filaments to Z-disks ## EXCITATION-CONTRACTION COUPLING IN SKELETAL MUSCLE - T-tubules carry depolarization - Dihydropyridine receptor is activated - Ryanodine receptors in SR opens, releasing Ca²⁺ - Ca²⁺ binds to troponin C - Tropomyosin to moves out of the way ## EXCITATION-CONTRACTION COUPLING IN SKELETAL MUSCLE - T-tubules carry depolarization - Dihydropyridine receptor is activated - Ryanodine receptors in SR opens, releasing Ca²⁺ - Ca²⁺ binds to troponin C - Tropomyosin to moves out of the way #### RELAXATION - Ca²⁺ reaccumulates in SR by Ca² ATPase (SERCA) - In SR Ca²⁺ is bound to calsequestrin The binding to calsequestrin results in a low amount of free Ca²⁺ in SR #### RIGOR MORTIS - What is rigor mortis? - Stiffness of death - Why are the muscles in the rigor position? - Because there is no ATP for Ca²⁺ ATPase to use - Why doesn't the myosin head move from the rigor position? - Because there is no ATP to bind to the myosin #### TYPES OF SMOOTH MUSCLE #### **Unitary** - Found in: - GI - Bladder - Uterus - Ureter - Linked by gap junctions - Pacemaker activity, or slow waves #### Multiunit - Found in: - Iris - Ciliary muscles - Vas deferens - Little or no coupling - Parasympathetic/sympathetic nervous system regulate function # EXCITATION-CONTRACTION COUPLING IN SMOOTH MUSCLE - Depolarization opens Ca²⁺ channels in membrane - IC Ca²⁺ binds to calmodulin - Ca²⁺-calmodulin complex activates myosin-light-chain kinase - Phosphorylated myosin binds to actin to form cross-bridges - IC Ca²⁺ decreases - Myosin-light-chain phosphatase ### Ca²⁺ CHANNELS AND RECEPTORS - Voltage-gated Ca²⁺ channels - Ligand-gated Ca²⁺ channels - IP₃-gated SR Ca²⁺ channels #### BLE 1-3 Comparison of Skeletal, Smooth, and Cardiac Muscle | Feature | Skeletal Muscle | Smooth Muscle | Cardiac Muscle | |---|--|--|--| | Appearance
Upstroke of action
potential | Striated
Inward Na+
current | No striations
Inward Ca ²⁺ current | Striated Inward Ca ²⁺ current (SA node) Inward Na ⁺ current (atria, | | Plateau | No | No | ventricles, Purkinje fibers) No (SA node) Yes (atria, ventricles, Purkinje fibers; due to inward Ca ²⁺ current) | | Duration of action potential | ~1 msec | ~10 msec | 150 msec (SA node, atria)
250–300 msec (ventricles
and Purkinje fibers) | | Excitation-
contraction
coupling | Action potential → T tubules Ca²+ released from nearby SR ↑ [Ca²+], | Action potential opens
voltage-gated Ca ²⁺
channels in cell
membrane
Hormones and transmit-
ters open IP ₃ - gated
Ca ²⁺ channels in SR | Inward Ca ²⁺ current during plateau of action potential Ca ²⁺ -induced Ca ²⁺ release from SR ↑ [Ca ²⁺] _i | | Molecular basis for contraction | Ca2+_troponin C | Ca²+-calmodulin ↑ myosin light-chain kinase | Ca2+-troponin C | IP₃ = inositol 1,4,5-triphosphate; SA = sinoatrial; SR = sarcoplasmic reticulum.