Cardiac Muscle Contraction

Muscle fiber structure

Thick filament

Myosin

Thin filament

- Actin
- Tropomyosin
- Troponin

Let's draw! ©

Contractility (inotropism)

Positive inotropic effects

- Increase contractility
- Increase:
 - Rate of tension development
 - Peak tension

Negative inotropic effects

- Decrease contractility
- Decrease:
 - Rate of tension development
 - Peak tension

Contractility is directly correlated with the intracellular [Ca²⁺]

Autonomic Effects

Back to the board!

Effects of heart rate on contractility

- Increased heart rate increased contractility
 Why?
- 1. Increased heart rate = more action potentials
 - This increases the total volume of trigger Ca²⁺ that enters the cell
 - If the increase in heart rate is caused by sympathetic stimulation, then the volume of Ca²⁺ influx per action potential is also increased
- 2. Increased Ca²⁺ influx = more Ca²⁺ stored in sarcoplasmic reticulum
 - Ca²⁺ uptake is further increased if caused by sympathetic stimulation (phospholamban)

Positive staircase effect

• Pattern of increase in tension when heart rate is increased

Cardiac glycosides

- Positive inotropic agents (e.g digoxin, ouabain)
- Inhibit Na⁺-K⁺ ATPase

Length-tension relationship

- Contractility is based on length/ tension of muscle fibers
- L_{max} tension > long fiber tension > short fiber tension
 - $L_{max} = 2.2$ micrometers

• Increasing muscle length increases Ca²⁺ sensitivity of troponin C and

Ca²⁺ release from SR

Frank-Starling relationship

~~definitions~~

- Preload the degree of overlap of muscle filaments
 - Same as end-diastolic fiber length
- Afterload the pressure that the heart must pump against

~~~more definitions~~~

- Stroke volume amount of blood ejected per contraction
 - Usually about 70mL
- Ejection fraction fraction of end-diastolic volume ejected per contraction
 - Usually around 55%
 - Indicator of contractility
- Cardiac output amount of blood ejected per unit time
 - CO = SV*HR
 - E.g 5L/min

Frank-Starling relationship

- "the volume of blood ejected by the ventricle depends on the volume present in the ventricle at the end of diastole"
- CO and SV are dependent on preload
 - Preload = Venous Return
- If VR is increased, CO will increase
- If VR is decreased, CO will decrease

Increasing volume stretches muscle fiber length (preload!)

Cardiac cycle

- 1. Atrial systole
- 2. Isovolumetric ventricular contraction
- 3. Rapid ventricular ejection
- 4. Reduced ventricular ejection
- 5. Isovolumetric ventricular relaxation
- 6. Rapid ventricular filling
- 7. Reduced ventricular filling

Atrial systole

- Contraction of the left atrium
- Preceded by P wave on ECG
- Mitral valve is open
 - Passive ventricular filling precedes atrial systole

Isovolumetric ventricular contraction

- Begins during QRS complex
- Closes mitral valve (S1)
- Ventricular volume stays the same; pressure increases

Ventricular ejection

- Aortic valve opens when ventricular pressure becomes greater than aortic pressure
- Rapid ejection
 - Large pressure gradient
 - Most of stroke volume is ejected here
 - Atria begin to fill for next cardiac cycle
 - ST segment
- Reduced ejection
 - Small pressure gradient/ volume ejection
 - Ventricles are no longer contracting
 - T wave

Isovolumetric ventricular relaxation

- Ventricles are fully repolarized
- End of T wave
- Left ventricular pressure decreases
- Aortic valve closes (S2)

Ventricular filling

- Mitral valve opens
- Rapid
 - Ventricular pressure remains low
- Reduced (*Diastasis*)
 - Longest phase of cardiac cycle

An ECG marks electrical events – this marks electrical AND mechanical events

Pressure-Volume Loop

- Putting it all together ©
- Back to the board!

