




# **RESPIRATORY PHYSIOLOGY**

Trym Reiberg • Ida Sletteng Karlsen • Alexandra Kathryn Vedeler



First Edition 27 March 2019 Copyright StudyAid 2019

#### Authors

Ida Sletteng Karlsen Trym Reiberg Alexandra Kathryn Vedeler

Illustrators

Ida Sletteng Karlsen Trym Reiberg Alexandra Kathryn Vedeler Nora Charlotte Sønstebø

#### **Booklet Disclaimer**

All rights reserved. No part of this book may be reproduced in any form on by an electronic or mechanical means, without permission from StudyAid.

Although the authors have made every effort to ensure the information in the booklet was correct at date of publishing, the authors do not assume and hereby disclaim any liability to any part for any information that is omitted or possible errors. The material is taken from a variety of academic sources as well as physiology lecturers, but are further incorporated and summarized in an original manner. It is important to note, the material has not been approved by professors of physiology. All illustrations in the booklet are original. This booklet is made especially for students at the Jagiellonian University in Krakow by tutors in the StudyAid group (students at JU). It is available as a PDF and is available for printing. If you have any questions concerning copyrights of the booklet please contact studyaidkrk@gmail.com.

#### About StudyAid

StudyAid is a student organization at the Jagiellonian University in Krakow. Throughout the academic year we host seminars in the major theoretical subjects: anatomy, physiology, biochemistry, immunology, pathophysiology, supplementing the lectures provided by the university. We are a group of 25 tutors, who are students at JU, each with their own field of specialty. To make our seminars as useful and relevant as possible, we teach in an interactive manner often using drawings and diagrams to help students remember the concepts. In addition to most seminars we create booklets, on which the seminars are based to aid the students in following the presentations. If you have any questions, do not hesitate to contact StudyAid at www.studyaid.no, we are always happy to answer any questions you may have academically related or not.



# TABLE OF CONTENTS

#### **SECTION 1 – MECHANICS OF VENTILATION**

| 1.0 – Lung Volumes and Capacities | 4  |
|-----------------------------------|----|
| 1.1 – Ventilation                 | 6  |
| 1.2 – Mechanics of Ventilation    | 9  |
| 1.3 – Test yourself               | 15 |

#### **SECTION 2 – RESPIRATION**

| 2.0 – Overview                              | 17 |
|---------------------------------------------|----|
| 2.1 – External Respiration                  |    |
| 2.2 – Internal Respiration - Oxygen         | 22 |
| 2.3 – Internal Respiration – Carbon Dioxide |    |
| 2.4 – Test Yourself                         | 29 |

# SECTION 3 – CONTROL OF BREATHING

| 3.0 – Involuntary Breathing | 32 |
|-----------------------------|----|
| 3.1 – Chemoreceptors        |    |
| 3.2 – Other Receptors       |    |
| 3.3 – Voluntary Breathing   | 40 |
| 3.4 – Test Yourself         | 41 |
|                             |    |

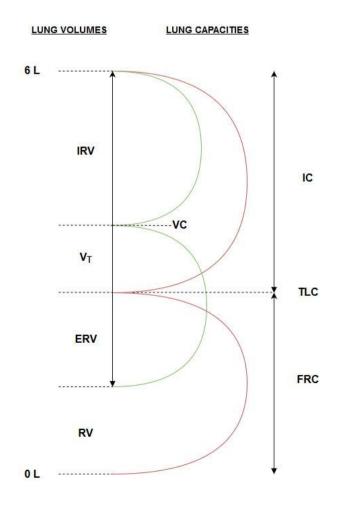
#### **SECTION 4 – INTEGRATIVE FUNCTIONS**

| 4.0 – Exercise      |  |
|---------------------|--|
| 4.1 – High Altitude |  |
| 4.2 – Test Yourself |  |



# Section 1 – Mechanics of Ventilation

- 1.0 Lung Volumes and Capacities
- 1.1 Ventilation
- 1.2 Mechanics of Ventilation
- 1.3 Test Yourself


# 1.0 – Lung Volumes and Capacities

#### I. Lung volumes

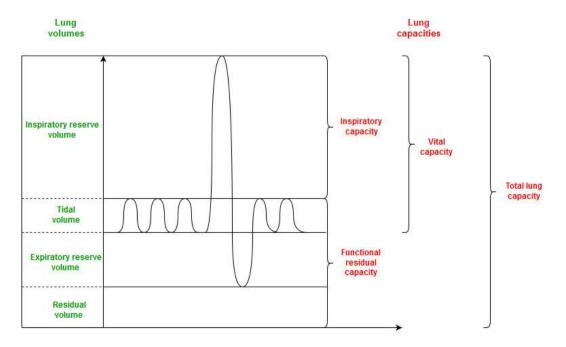
- Measured by spirometry (*exception*: RV)
- 4 types
- Tidal volume ( $V_T$ ), inspiratory reserve volume (IRV), expiratory reserve volume (ERV) and residual volume (RV)

#### II. Lung capacities

- Calculated from the lung volumes (> 2 lung volumes)
- 4 types
- Inspiratory capacity (IC), vital capacity (VC), functional residual capacity (FRC) and total lung capacity (TLC)






#### III. Summary

| Term                              | Definition                       | Value |
|-----------------------------------|----------------------------------|-------|
| Tidal volume (V <sub>T</sub> )    | Amount of air inspired or        | 0,5 L |
|                                   | expired during quiet             |       |
|                                   | ventilation                      |       |
| Inspiratory reserve volume        | The maximal amount of air        | 3 L   |
| (IRV)                             | that can be inspired with effort |       |
|                                   | at the end of a normal           |       |
|                                   | inspiration                      |       |
| Expiratory reserve volume         | The maximal amount of air        | 1,2 L |
| (ERV)                             | that can be expired with effort  |       |
|                                   | at the end of a normal           |       |
|                                   | expiration                       |       |
| Inspiratory capacity (IC)         | Maximal inhalation after         | 3,5 L |
|                                   | normal expiration                |       |
| Vital capacity (VC) <sup>1</sup>  | Maximal expiration after         | 4,7 L |
|                                   | maximal inspiration              |       |
| Residual volume (RV) <sup>2</sup> | Volume remaining in the lungs    | 1,2 L |
|                                   | after maximal expiration         |       |
| Functional residual capacity      | Volume remaining in the lungs    | 2,4 L |
| (FRC) <sup>3</sup>                | after normal expiration          |       |

<sup>1</sup> Vital capacity (VC) and forced vital capacity (FVC) have the same value, but the process of measurement is different. When measuring VC, the patient takes a full inspiration and blows out the air in a slow maneuver. When measuring FVC, the patient takes a full inspiration and blows out the air in a forceful maneuver.

 $^{2}\,\mbox{If we did not have any residual volume, the lungs would collapse.$ 

<sup>3</sup> Equilibrium volume of the lung.



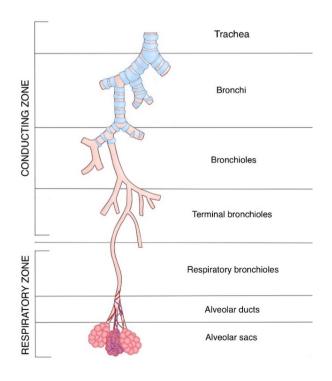


# 1.1 – Ventilation

#### 1.1.1 – Definition

- Refers to the movement of air between the atmosphere and the lungs through the process of inspiration and expiration
- It must be distinguished from *respiration*

| Ventilation | Respiration                         |
|-------------|-------------------------------------|
| Mechanical  | Ventilation + diffusion + perfusion |


#### 1.1.2 – Structure of the Respiratory System

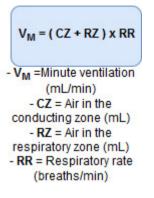
# I. Conducting zone

- Composed of the airways (trachea, bronchus, bronchioles and terminal bronchioles)
- Does not participate in gas exchange

#### II. Respiratory zone

- Composed of the lungs (respiratory bronchioles, alveolar ducts and alveolar sacs)
- Participates in gas exchange





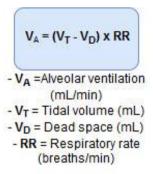



#### $1.1.3 - Minute Ventilation (V_M)$

- I. Definition
  - Refers to the total volume of gas that enters the respiratory system per minute

#### II. Equation




#### III. Calculation

| VM | = | (CZ + RZ)    | x | RR     |
|----|---|--------------|---|--------|
|    | = | VT           | x | RR     |
|    | = | 500 mL       | x | 15/min |
|    | = | 7,500 mL/min |   |        |

#### 1.1.4 - Alveolar Ventilation (V<sub>A</sub>)

- I. Definition
  - Refers to the volume of gas that reaches the alveoli per minute

#### II. Equation



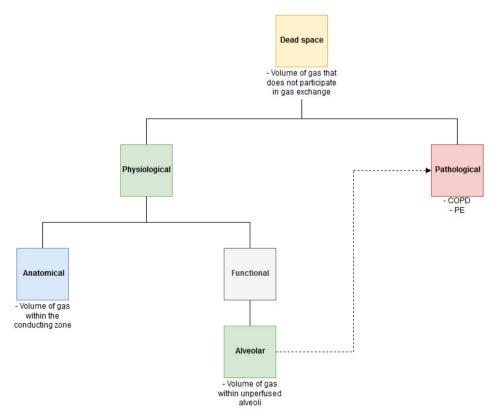


#### III. Calculation

| VA | = | (V <sub>T</sub> - V <sub>D</sub> ) | x    | RR     |
|----|---|------------------------------------|------|--------|
|    | = | (500 mL - 150 mL)                  | x    | 15/min |
|    | = | 350 mL                             | x    | 15/min |
|    | = | 5,250 ml                           | _/mi | 'n     |
|    |   |                                    |      |        |

#### 1.1.5 – Dead Space

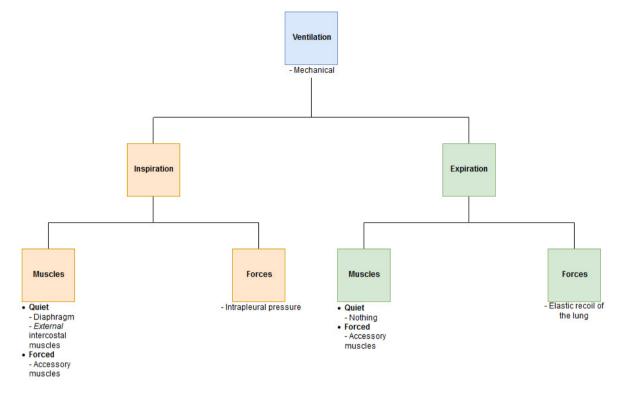
#### I. Definition


- Refers to the volume of gas that does not participate in gas exchange
- It may be considered as "wasted ventilation"
- Divided into physiological- and pathological dead space

#### II. Physiological dead space

- Composed of anatomical- and alveolar dead space
- Anatomical dead space: Volume of gas within the conducting zone
- Alveolar dead space: Volume of gas within unperfused alveoli
- The ratio of the physiological dead space to the tidal volume is ≈1/3

#### III. Pathological dead space


- Chronic obstructive pulmonary disease (COPD)
- Pulmonary embolism (PE)

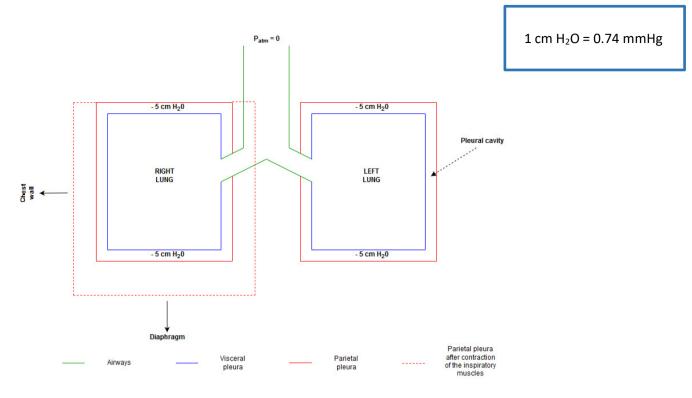




# 1.2 – Mechanics of Ventilation

#### 1.2.1 – Overview

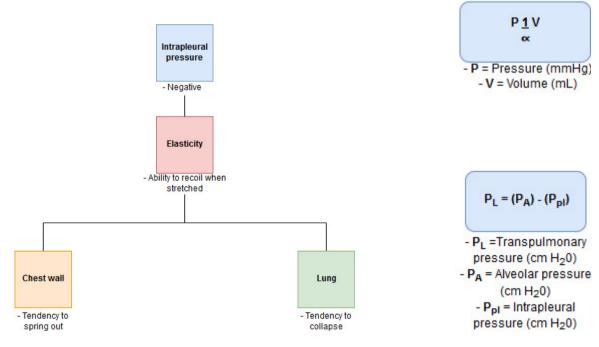



#### 1.2.2 – Inspiration

#### I. Muscles

|                      | <b>Quiet</b> inspiration             |                     | Forced inspiration               |
|----------------------|--------------------------------------|---------------------|----------------------------------|
| Diaphragm            | - Major muscle                       | Sternocleidomastoid | - Contraction of the             |
|                      | - Contraction of the                 |                     | sternocleidomastoid $ ightarrow$ |
|                      | diaphragm $ ightarrow$ downward      |                     | elevation of the sternum         |
|                      | displacement                         |                     | - Increases the                  |
|                      | - Increases the vertical             |                     | anteroposterior diameter         |
|                      | diameter of the thoracic             |                     | of the thoracic cavity           |
|                      | cavity                               |                     |                                  |
| External intercostal | - Minor muscle                       | Scalene muscles     | - Contraction of the             |
| muscles              | - Contraction of the                 |                     | scalene muscles $ ightarrow$     |
|                      | external intercostal                 |                     | elevation of the upper           |
|                      | muscles $ ightarrow$ ribs are lifted |                     | ribs                             |
|                      | up and out                           |                     | - Increases the                  |
|                      | - Increases the                      |                     | anteroposterior diameter         |
|                      | anteroposterior - and                |                     | of the thoracic cavity           |
|                      | horizontal diameter of the           |                     |                                  |
|                      | thoracic cavity                      |                     |                                  |

*Note:* Inspiration is an <u>active</u> process (*regardless of whether it is quiet or forced*)






#### II. Forces

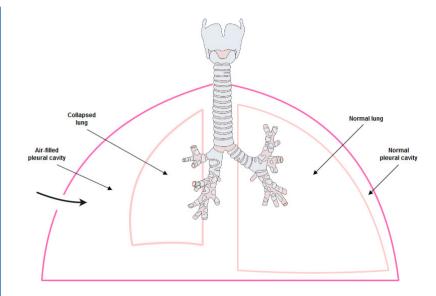
#### 1. Intrapleural pressure

- Represents the pressure in the pleural cavity
- Subatmospheric (negative)
- Expanding force



**Boyles law** 




# III. Clinical correlation

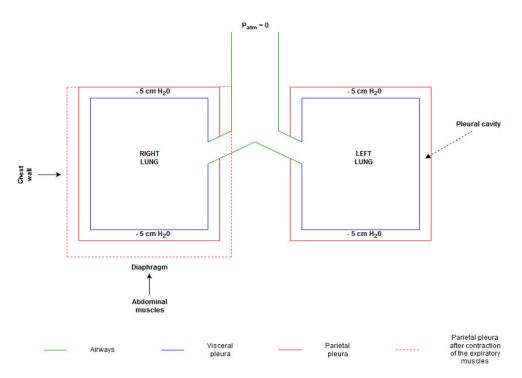
#### **CLINICAL CORRELATION**

#### Pneumothorax

When a sharp object penetrates the chest wall and punctures the intrapleural space – a connection is created between the atmosphere and the pleural space
Air flows into the pleural cavity along the pressure gradient until the intrapleural pressure equals the atmospheric pressure
There are two important clinical consequences of a pneumothorax;

- 1. Collapsed lung
- 2. Expansion of the chest wall

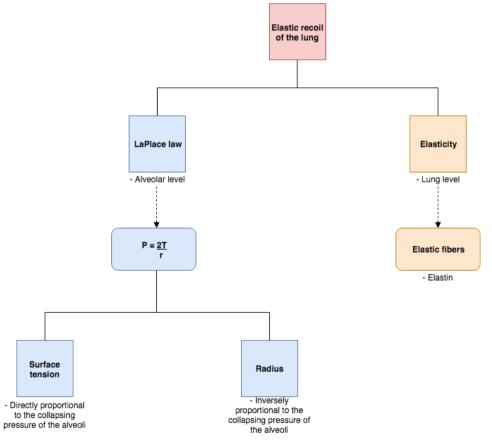



#### 1.2.3 – Expiration

#### I. Muscles

| Quiet expiration |                      | Forced expiration                         |  |
|------------------|----------------------|-------------------------------------------|--|
|                  | Abdominal muscles    | - Major muscle                            |  |
|                  |                      | - Contraction of the abdominal            |  |
|                  |                      | muscles $\rightarrow$ upward displacement |  |
|                  |                      | of the diaphragm                          |  |
|                  |                      | - Decreases the vertical diameter         |  |
|                  |                      | of the thoracic cavity                    |  |
|                  | Internal intercostal | - Minor muscle                            |  |
|                  | muscles              | - Contraction of the internal             |  |
|                  |                      | intercostal muscles $ ightarrow$ ribs are |  |
|                  |                      | pulled down and in                        |  |
|                  |                      | - Decreases the anteroposterior-          |  |
|                  |                      | and horizontal diameter of the            |  |
|                  |                      | thoracic cavity                           |  |

Note: Quiet expiration is a passive process, while forced expiration is an active process





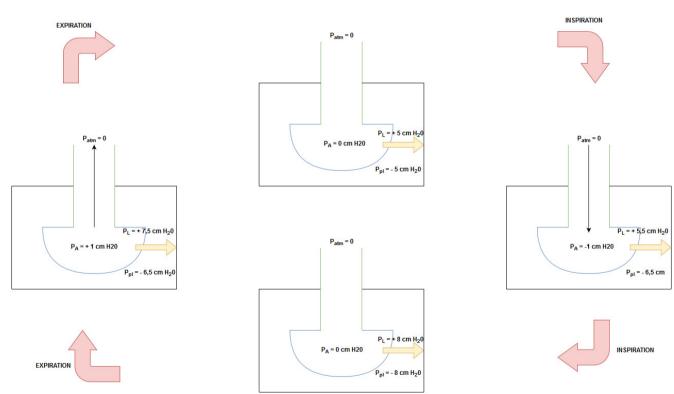

#### II. Forces

#### 1. Elastic recoil of the lung

- Represents the tension in the wall of the lung
- It is determined by LaPlace law and the inherent elasticity of the lung
- Collapsing force






#### III. Clinical correlation

#### **CLINICAL CORRELATION**

#### Respiratory distress syndrome (RDS)

- Surfactant is synthesized by type II pneumocytes
   The most important constituent of surfactant is dipalmitoylphosphatidylcholine (DPPC)
   The production of surfactant occurs between 24<sup>th</sup> and 34<sup>th</sup> week of gestation
   Infants born before 24<sup>th</sup> week of gestation → never have surfactant
   Infants born between 24<sup>th</sup> and 34<sup>th</sup> week of gestation
   And the surfactant status
   Lack of surfactant produces the following consequences;
  - 1. Increased surface tension - Collapse of alveoli
  - 2. Unopposed LaPlace Law - Collapse of small alveoli

#### 1.2.4 – Ventilatory Cycle





# 1.2.5 – Clinical Correlations

|                 | Restrictive lung disease               | Obstructive lung disease                                              |
|-----------------|----------------------------------------|-----------------------------------------------------------------------|
| Pathophysiology | - Fibrosis of lung tissue $ ightarrow$ | - Destruction of elastic fibers                                       |
|                 | ↓compliance                            | $\rightarrow \downarrow$ elasticity $\rightarrow \uparrow$ compliance |
| Definition      | - Any pathology that interferes        | - Any pathology that interferes                                       |
|                 | with the ability to develop            | with the ability to develop                                           |
|                 | negative P <sub>A</sub>                | positive P <sub>A</sub>                                               |
| Main problem    | - Inspiration                          | - Expiration                                                          |
| Examples        | - Pulmonary fibrosis (IPF)             | - Chronic obstructive                                                 |
|                 |                                        | pulmonary disease (COPD)                                              |
|                 |                                        | - Asthma                                                              |



# 1.3 – Test Yourself

# 1) Select the correct statement(s) regarding lung volumes and capacities

- a) Tidal volume is the amount of air inspired or expired during forced ventilation
- b) IRV and ERV are used during quiet ventilation
- c) VC and FVC have different values
- d) The amount of air remaining in the lungs after normal expiration is called FRC and has a value of
- 2,4 L

e) None of the above

# 2) Which are the only lung volumes and capacities <u>NOT</u> measurable with spirometry? (tip: draw the mneumonic "m and M")

a) RV, FRC and VC

b) RV, VC and TLC

c) RV, FRC and TLC

- d) All of the lung volumes and capacities are technically measurable with spirometry
- e) It depends on the patient

# 3) What is/are the correct formula(s) for calculation of lung capacities.

- a) VC =  $V_T$  + IRV + ERV
- b) TLC = VC + RV
- c) TLC = FRC + IC
- d) A and C are correct
- e) All of the above

#### 4) Select the correct statement regarding ventilation.

a) Alveolar ventilation is greater than minute ventilation

b) The conducting zone may sometimes participate in gas exchange

c) The respiratory zone is composed of terminal bronchioles, respiratory bronchioles, alveolar ducts and alveolar sacs

d) In all cases, the quantity of the physiological dead space is around 1/3 of the tidal volume

e) None of the above

#### 5) What is the difference between ventilation and respiration?

a) There is no difference between ventilation and respiration

b) Ventilation refers to the mechanical aspect of breathing

c) Respiration refers to everything from the mechanical aspect of breathing to the usage of oxygen in oxidative phosphorylation

d) B and C are correct

e) None of the above



# 6) Select the correct statement regarding the muscles of ventilation.

a) Contraction of the internal intercostal muscles increases the anteroposterior- and horizontal diameter of the thoracic cavity

- b) Inspiration is always an active process
- c) In some individuals, quiet expiration might be an active process
- d) A and B are correct
- e) None of the above

#### 7) Select the correct statement regarding intrapleural pressure.

a) The normal value of the intrapleural pressure in a resting adult is - 5 cm  $H_2O$ 

b) The negative value is created by the lung and the chest wall pulling on the parietal- and visceral pleural, respectively

c) The intrapleural pressure may become positive in a pneumothorax

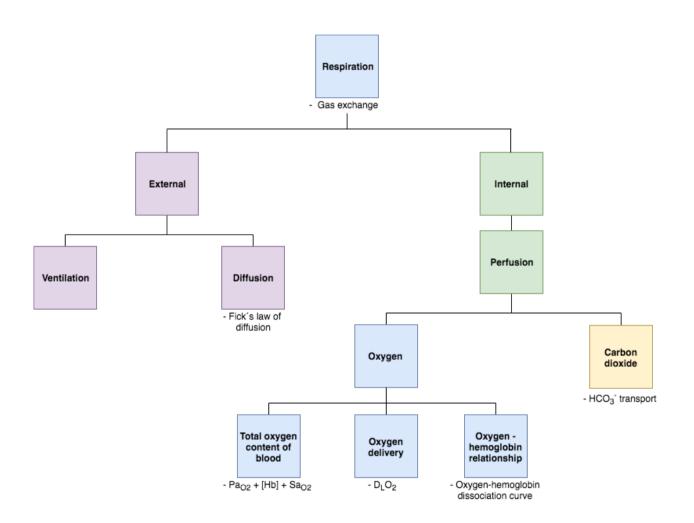
d) A and C are correct

e) All of the above

#### 8) Select the correct statement regarding elastic recoil of the lung.

- a) Elastic recoil is determined by LaPlace law and the inherent compliance of the lung
- b) Surfactant is produced by type I pneumocytes
- c) The major function of surfactant is to destroy the elastic fibers of the lung
- d) When elastic recoil is greater than the intrapleural pressure, the lung will collapse
- e) None of the above

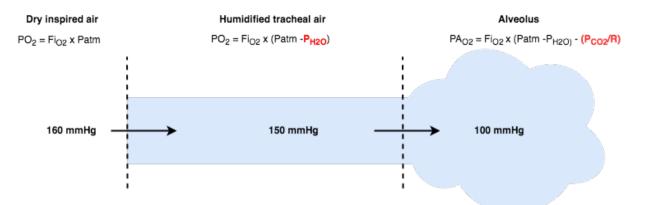
#### 9) At which point during the ventilatory cycle is the highest flow of air into the alveoli?


- a) Beginning of inspiration
- b) Middle of inspiration
- c) End of inspiration
- d) The air flow is equally high during the whole inspiratory phase
- e) A and B are correct



# Section 2 – Respiration

- 2.0 Overview
- 2.1 External Respiration
- 2.2 Internal Respiration Oxygen
- 2.3 Internal Respiration Carbon Dioxide
- 2.4 Test Yourself


#### 2.0 – Overview






# 2.1 – External Respiration

# 2.1.1 – Ventilation



#### I. Dry inspired air

 The amount of oxygen in dry inspired air is determined by the fraction of inspired oxygen (Fi<sub>02</sub>) and the atmospheric pressure (P<sub>atm</sub>)



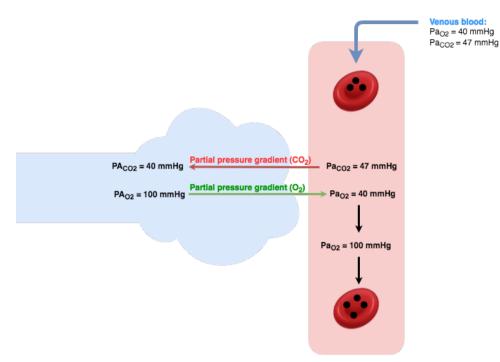
#### **CLINICAL CORRELATION**

<u>Q:</u> "How does supplementation of oxygen increase the partial pressure of oxygen present in the alveoli?"

<u>A:</u> Oxygen supplementation will increase the Fi<sub>02</sub>. For example, 1L/min of oxygen increases the Fi<sub>02</sub> from 21% to 25%.

#### II. Humidified tracheal air

- The presence of water in the respiratory tract will dilute the oxygen


#### III. Alveolar air

- Gives the alveolar gas equation
- The partial pressure of oxygen decreases because carbon dioxide has the ability to displace oxygen





#### 2.1.2 – Diffusion



#### RULES OF PARTIAL PRESSURE GRADIENTS

- Gases always diffuse from an area of higher partial pressure to an area of lower partial pressure
- Only **dissolved gases** can contribute in the partial pressure gradient

#### I. Oxygen

- **Partial pressure gradient:** The partial pressure of oxygen in the alveoli (PA<sub>02</sub>) is higher than the partial pressure of oxygen in the pulmonary venous blood (Pa<sub>02</sub>). Oxygen will therefore diffuse from the alveoli to the pulmonary capillary
- **Equilibrium:** diffusion of oxygen continues until the partial pressure in the pulmonary capillary equals the partial pressure in the alveolus
- **Hemoglobin uploading:** the dissolved oxygen uploads on hemoglobin after equilibrium is reached

#### II. Carbon dioxide

- <u>Partial pressure gradient</u>: The partial pressure of carbon dioxide in the pulmonary venous blood (Pa<sub>CO2</sub>) is higher than the partial pressure of carbon dioxide in the alveolus (PA<sub>CO2</sub>). Therefore, carbon dioxide will diffuse from the capillary and into the alveolus
- **Equilibrium:** Diffusion of carbon dioxide continues until the partial pressure in the pulmonary capillary equals the partial pressure in the alveolus

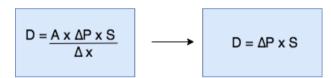
| PA <sub>CO2</sub> = | Metabolism |
|---------------------|------------|
|                     | VA         |

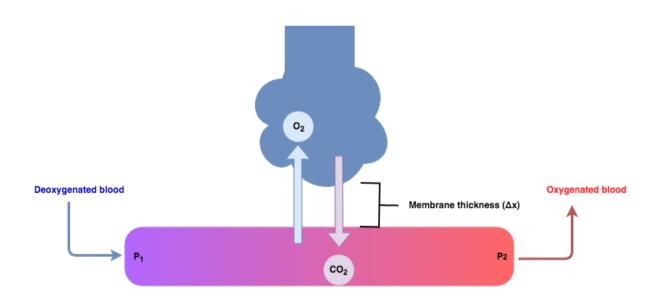
|                          | PA <sub>02</sub>   | PA <sub>CO2</sub>             |
|--------------------------|--------------------|-------------------------------|
| Directly proportional to | Pa <sub>02</sub>   | Pa <sub>CO2</sub>             |
| Main determinants        | - P <sub>atm</sub> | - V <sub>A</sub> <sup>1</sup> |
|                          | - Fi <sub>O2</sub> | - Metabolism                  |



#### 2.1.3 - Fick's Law of Diffusion

#### I. Definition


- Describes the rate of diffusion of a gas across a permeable membrane (e.g., how fast a gas will diffuse from the alveoli and into the pulmonary capillary)


#### II. Factors determining rate of diffusion

| Lung variables     | Abbreviation | Comment                     |
|--------------------|--------------|-----------------------------|
| Surface area       | A            | Determined by the number of |
|                    |              | alveoli                     |
| Membrane thickness | Δx           | Interstitial space          |

| Gas variables             | Abbreviation | Comment            |
|---------------------------|--------------|--------------------|
| Solubility                | S            | $CO > CO_2 >> O_2$ |
| Partial pressure gradient | ΔΡ           | $(P_1 - P_2)$      |

#### III. Equation







#### IV. Examples

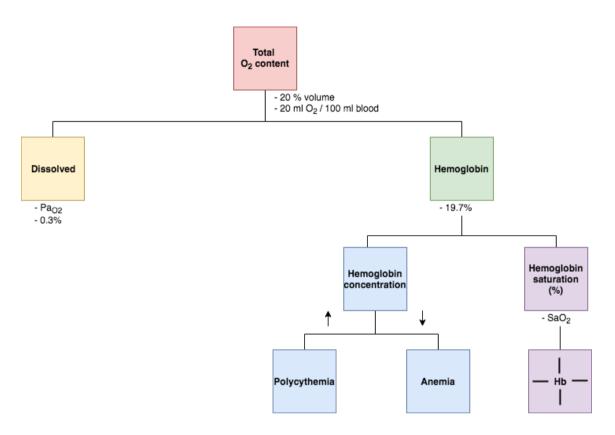
- 1. "Which gas will diffuse first, CO<sub>2</sub> or O<sub>2</sub>?"
  - In order to evaluate the rate of diffusion for CO<sub>2</sub> and O<sub>2</sub>, one must compare the partial pressure gradient and the solubility of both gases

Partial pressure gradients:  $\Delta P_{CO2} = (47 - 40) = 7 \text{ mmHg}$  $\Delta P_{O2} = (100 - 40) = 60 \text{ mmHg}$ 

Solubility:

 $CO > CO_2 >> O_2$ 

- CO<sub>2</sub> will diffuse first due to a much larger solubility, even though it has a smaller pressure gradient
- 2. "Emphysema is a chronic obstructive lung disease which leads to destruction of the alveoli. How will this affect the diffusion of O<sub>2</sub> and CO<sub>2</sub> across the alveoli?"
  - Destruction of the alveoli will decrease the surface area of the lung


$$\oint D = \frac{\oint A \times \Delta P \times S}{\Delta \times}$$

- Decreased surface area will impair the diffusion of both O<sub>2</sub> and CO<sub>2</sub>
- Less  $O_2$  will be able to diffuse from the alveoli into the blood  $\rightarrow$  hypoxemia
- Less  $CO_2$  will be able to diffuse from the blood into the alveoli  $\rightarrow$   $CO_2$  builds up in the blood  $\rightarrow$  hypercapnia



# 2.2 – Internal Respiration – Oxygen

#### 2.2.1 – Total Oxygen Content



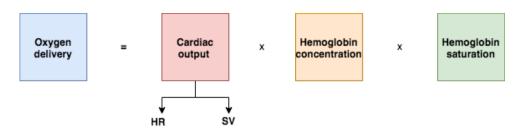
#### I. Dissolved oxygen

- Only form of oxygen which produces a partial pressure
- Not bound to hemoglobin

#### II. Hemoglobin

- Majority of circulating oxygen is bound to hemoglobin
- The amount of oxygen carried by hemoglobin is dependent on two variables

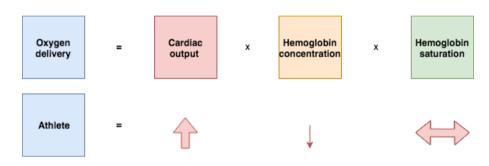
#### 1. Concentration


- Normal values: 12-17 g/dL
- Hemoglobin concentration below the normal range is referred to as anemia
- Hemoglobin concentration above the normal range is referred to as **polycythemia**

#### 2. Saturation

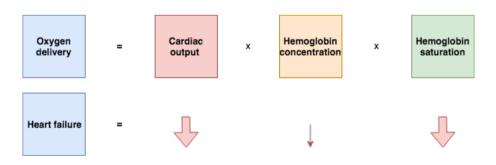
- A single molecule of hemoglobin can bind four oxygen molecules
- Hemoglobin is 100% saturated when four oxygen molecules are attached
- **<u>Positive cooperativity:</u>** When hemoglobin binds the first oxygen molecule, the next oxygen molecule will bind more easily




#### 2.2.2 – Oxygen Delivery (DLO2)



#### I. Definition


- Oxygen delivery to the tissues is determined by the blood flow (*cardiac output*) and the total oxygen content of blood

#### II. Clinical correlations



#### 1. "How will a mild anemia affect the oxygen delivery in an young athlete?"

- Small drops in the hemoglobin concentration will be compensated by increasing the cardiac output
- Larger drops in hemoglobin is required for developing symptoms
- Oxygen delivery to the tissues will be maintained
- 2. "How will a mild anemia affect the oxygen delivery in an old patient with heart failure and chronic obstructive lung disease?"



- Small drops in the hemoglobin concentration will not be compensated by increasing the cardiac output
- Small drops in hemoglobin concentration is enough to cause symptoms
- Oxygen delivery to the tissues will worsen



#### 2.2.4 – Oxygen-Hemoglobin Relationship

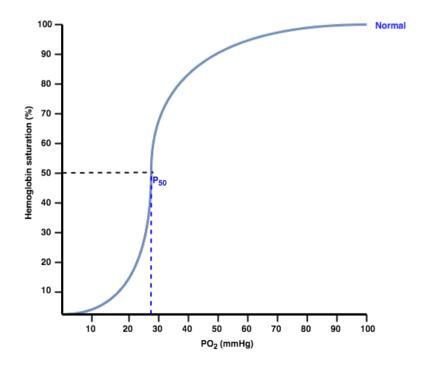
#### I. Affinity of hemoglobin to oxygen

- Under normal circumstances, the number of oxygen molecules unloaded from hemoglobin is determined by the amount of dissolved oxygen in the blood

#### 1. High amount of dissolved oxygen

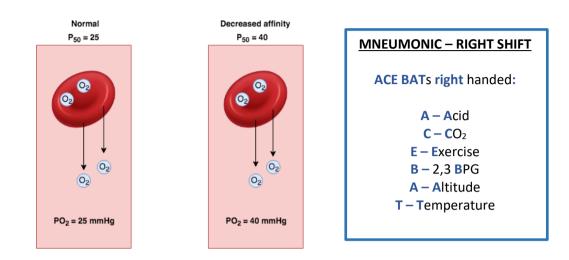
- Blood is fully saturated with oxygen
- The affinity of hemoglobin to oxygen is high
- Unloading of oxygen from hemoglobin will be prevented

#### 2. Low amount of dissolved oxygen

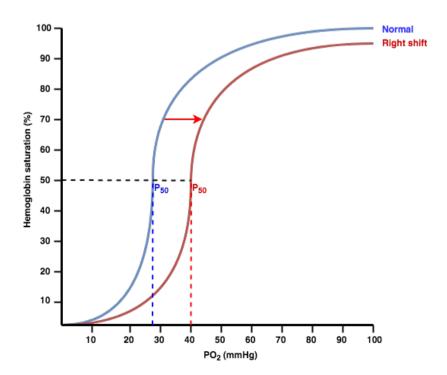

- Blood is poorly saturated with oxygen
- The affinity of hemoglobin to oxygen is low
- Unloading of oxygen from hemoglobin will be favored

#### II. P<sub>50</sub>

Is the partial pressure of oxygen in blood (Pa<sub>02</sub>) at which hemoglobin is 50% saturated (25 mmHg)

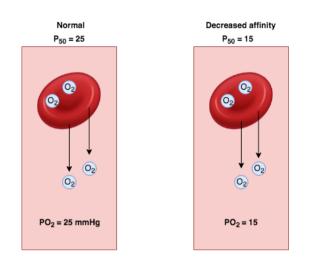

| Pa <sub>o2</sub> (mmHg) | Saturation (%) |
|-------------------------|----------------|
| 100                     | > 96           |
| 40                      | 75             |
| 25                      | 50             |

# III. Oxygen-hemoglobin dissociation curve

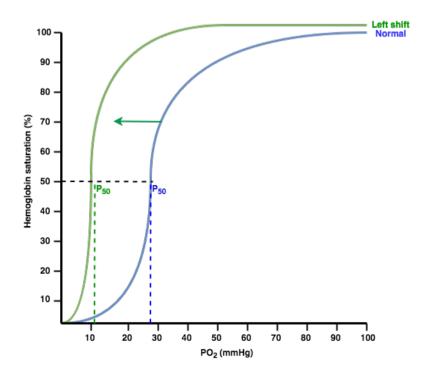





- 1. Decreased affinity of hemoglobin to oxygen
- Oxygen is less tightly bound to hemoglobin
- Hemoglobin will release more oxygen molecules at higher amounts of dissolved oxygen
- $P_{50}$  is increased  $\rightarrow$  curve shifted to the right
- Example: Muscle



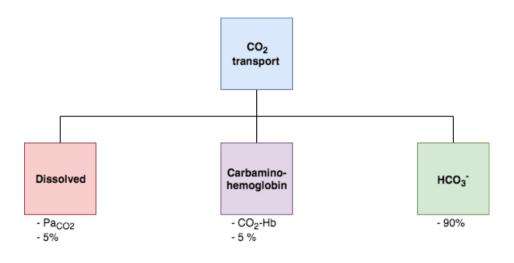

| Variable                   | Comments                                         |
|----------------------------|--------------------------------------------------|
| Increased P <sub>cO2</sub> | - Bohr effect                                    |
| Increased H <sup>+</sup>   | <ul> <li>Increased metabolic activity</li> </ul> |
|                            | <ul> <li>Increased oxygen demand</li> </ul>      |
| Increased temperature      | <ul> <li>Increased metabolic activity</li> </ul> |
|                            | <ul> <li>Increased heat production</li> </ul>    |
|                            | <ul> <li>Increased oxygen demand</li> </ul>      |
| Increased 2,3 - BPG        | - Product of RBC glycolysis                      |
|                            | <ul> <li>Increased metabolic activity</li> </ul> |
|                            | <ul> <li>Increased oxygen demand</li> </ul>      |



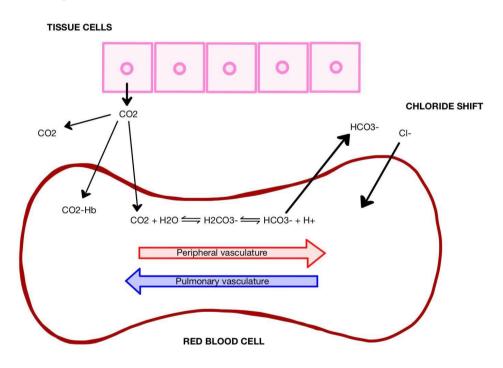



- 2. Increased affinity of hemoglobin to oxygen
- Oxygen is more tightly bound to hemoglobin
- Hemoglobin will release less oxygen molecules at lower amounts of dissolved oxygen
- $P_{50}$  is decreased  $\rightarrow$  curve shifted to the left
- **Example:** Pulmonary circulation after gas exchange




| Variable                   | Comment                                       |
|----------------------------|-----------------------------------------------|
| Decreased P <sub>CO2</sub> | - Decreased metabolic activity                |
| Decreased H <sup>+</sup>   | <ul> <li>Decreased oxygen demand</li> </ul>   |
|                            |                                               |
| Decreased                  | - Decreased metabolic activity                |
| temperature                | <ul> <li>Decreased heat production</li> </ul> |
|                            | <ul> <li>Decreased oxygen demand</li> </ul>   |
| Decreased 2,3 - BPG        | - Decreased tissue metabolism                 |
|                            | <ul> <li>Decreased oxygen demand</li> </ul>   |






# 2.3 – Internal Respiration – Carbon Dioxide

#### 2.3.1 – Overview



#### 2.3.2 – HCO<sub>3</sub> transport



#### I. Peripheral vasculature

- Due to the high amounts of CO<sub>2</sub> coming from the tissues, the reaction is shifted to towards HCO<sub>3</sub> production
- CO2 produced by tissue metabolism diffuses out of the tissues and into the red blood cell
- $CO_2$  combines with H<sub>2</sub>O to produce H<sub>2</sub>CO<sub>3</sub>, which dissociates into H<sup>+</sup> and HCO<sub>3</sub>
- HCO<sub>3</sub> is transported out of the RBC in exchange for Cl<sup>-</sup> (*chloride shift*)



# II. The pulmonary vasculature

- Due to the low amounts of CO<sub>2</sub> in the pulmonary vasculature, the reaction is shifted towards CO<sub>2</sub> production
- HCO<sub>3</sub><sup>-</sup> will diffuse into the RBC in exchange for Cl<sup>-</sup>
- $HCO_3^-$  combines with H<sup>+</sup> to produce H<sub>2</sub>CO<sub>3</sub>, which is converted into CO<sub>2</sub> and H<sub>2</sub>O
- CO<sub>2</sub> will diffuse out of the RBC and into the alveolus



# 2.4 – Test Yourself

# 1. Which factor(s) are the main determinants of the partial pressure of oxygen in the alveolus?

- a) PA<sub>CO2</sub>
- b) Fi<sub>O2</sub>
- c)  $P_{\text{atm}}$
- **d) Р**<sub>Н2О</sub>
- e) B and D
- f) B and C

# 2) Which of the following equations best describes the amount of oxygen present in the alveolus?

a)  $PA_{O2} = Fi_{O2} \times (P_{atm} - P_{H20}) - (P_{CO2}/R)$ b)  $Pa_{O2} = Fi_{O2} \times (P_{atm} - P_{H20}) - (P_{CO2}/R)$ c)  $PA_{O2} = Fi_{O2} \times (P_{atm} - P_{H20})$ d)  $PA_{O2} = Fi_{O2} \times (P_{atm} - P_{H20}) \times (P_{CO2}/R)$ 

# 3) What are the effects of supplemental oxygen?

a) It increases the P<sub>atm</sub>

b) It increases the  $\mathrm{Fi}_{\mathrm{O2}}$ 

c) Administration of 1 L/min of oxygen will increase the  $Fi_{\rm 02}$  to 25%

d) Administration of 1 L/min of oxygen will increase the  $P_{\text{atm}}$  to 25%

- e) A and D
- f) B and C

# 4) Select the correct statement(s) regarding oxygen transport from the alveolus to the pulmonary capillary.

a) The direction of diffusion is determined by the partial pressure gradient

b) Gases will diffuse from an area of lower partial pressure to an area of higher partial pressure

- c) Oxygen uploads directly on to hemoglobin during diffusion into the pulmonary capillary
- d) Only gases bound to hemoglobin can participate in the partial pressure gradient
- e) A and C

f) A and D

# 5) Select the correct statement(s) regarding Fick's law of diffusion.

a) It describes how fast a gas will diffuse across a semipermeable membrane

b) It is dependent on surface area of the lung and size of the interstitial space

c) Pathologies which result in destruction of alveoli will decrease the diffusion rate of gases

d) It is dependent on the solubility and surface area of gases

e) A, B and C

f) B and C

#### 6) Which of the following gases is most soluble?

a) Oxygen

- b) Carbon dioxide
- c) Carbon monoxide
- d) Nitrogen



# 7) Select the correct statement(s) regarding the total oxygen content of blood.

a) The majority of oxygen is dissolved in blood

b) The majority of oxygen is bound to hemoglobin

c) The total oxygen content is determined by dissolved oxygen, hemoglobin saturation and hemoglobin concentration

d) The total oxygen content is determined by dissolved oxygen, hemoglobin saturation, hemoglobin concentration and cardiac output

e) B and C

f) B and D

8) "A young athlete comes to your office for her yearly checkup. She tells you that she has no complaints and is otherwise feeling healthy. As a part of the checkup, you take a blood sample to determine the hemoglobin level of the patient. When the results come back you see that her hemoglobin level is slightly decreased. Select the correct statement(s) regarding the oxygen delivery and symptoms in this patient."

a) The oxygen delivery will be decreased

b) Oxygen delivery will be maintained due to the ability of young patients to increase their hemoglobin production

c) Oxygen delivery will be maintained due to the ability of young patients to compensate by increasing their cardiac output

d) The patient may have no other signs of anemia than a slight increase in heart rate

- e) The patient will be pale
- f) B and E
- g) C and D

# 9) Select the correctly matched pairs.

- a) ↑ CO<sub>2</sub> Right shift
  b) ↓ Temperature Right shift
  c) ↑ pH Left shift
  d) Bohr effect Left shift
  e) ↑H<sup>+</sup> Right shift
- f)  $\downarrow$  2,3 BPG Left shift

#### 10) Select the correct statement(s) regarding the $P_{50}$ value.

a) It is the partial pressure of oxygen at which hemoglobin is 50% saturated

- b) It is the partial pressure of carbon dioxide at which hemoglobin is 50% saturated
- c) It is increased with right shifts
- d) It is increased with left shifts
- e) A and C
- f) A and D

# 11) In the transport of $CO_2$ from the tissues to the lungs; which of the following occurs in venous blood?

a) Conversion of CO<sub>2</sub> and H<sub>2</sub>O to H<sup>+</sup> and HCO<sub>3</sub> in red blood cells

- b) Shifting of  $HCO_3$  into the RBCs from plasma in exchange for  $\mbox{Cl}^-$
- c) Binding of  $\mathsf{HCO}_3$  to hemoglobin
- d) Conversion of  $HCO_3$  and  $H^+$  to  $CO_2$  and  $H_2O$



# **12)** Most of the CO<sub>2</sub> transported in the blood is:

a) Dissolved in plasma (Pa<sub>CO2</sub>)

b) In the form of carbaminohemoglobin

c) Transported as HCO<sub>3</sub><sup>-</sup>

d) Combined with chloride

# 13) Select the correct statement(s) regarding CO<sub>2</sub> transport in the lung.

a) There is conversion of  $CO_2$  and  $H_2O$  to  $H^+$  and  $HCO_3^-$  in red blood cells

b) There is conversion of  $HCO_3^{\scriptscriptstyle -}$  and  $H^{\scriptscriptstyle +}$  to  $CO_2$  and  $H_2O$  in red blood cells

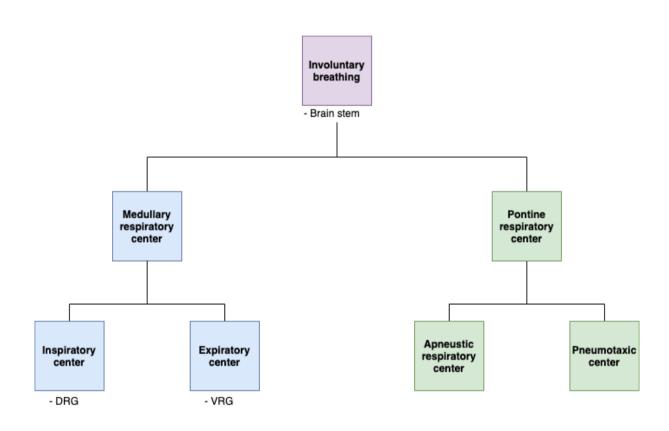
c) The chloride concentration in the red blood cell decreases

d) The chloride concentration in the red blood cell increases

e) B and C

f) B and D



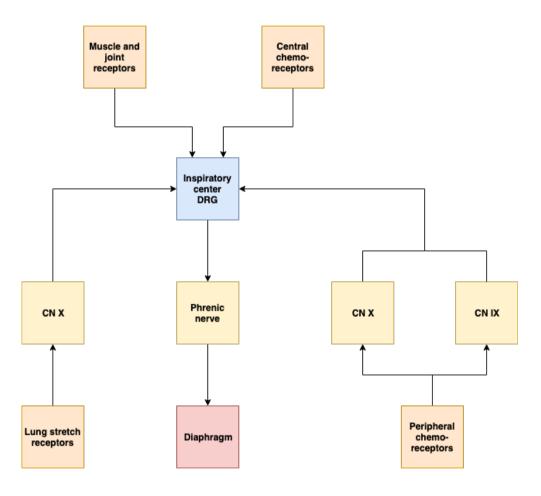

# Section 3 – Control of Breathing

- 3.0 Involuntary Breathing
- 3.1 Chemoreceptors
- 3.2 Other Receptors
- 3.3 Voluntary Breathing
- 3.4 Test Yourself

#### 3.0 – Involuntary Breathing

- Involuntary breathing is controlled by specific centers located in the brain stem

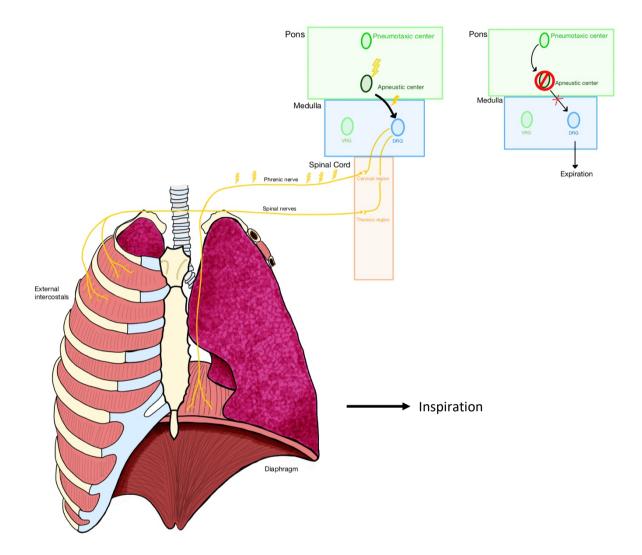
#### 3.0.1 – Overview






#### 3.0.2 – The Medullary Respiratory Center

#### I. Inspiratory center


- Located in the dorsal respiratory group (DRG)
- The DRG is active only during inspiration and maintains the rate of normal, quiet breathing
- Receives sensory input from peripheral chemoreceptors
- Sends motor output to the diaphragm signaling contraction
- The posterior neurons of the DRG receives information from the Hering-Breuer reflex
   → inhibition of inspiration
- The DRG is inhibited by the pneumotaxic center



#### II. The expiratory center

- Located in the ventral respiratory group (VRG)
- The VRG is made up from neurons of the nucleus ambiguous, nucleus retroambiguus, and the **Pre-Bötzinger complex** (inspiratory and expiratory neurons)
- The Pre-Bötzinger complex is important in rhythmic respiration
- Inactive during normal quiet breathing
- Active during vigorous breathing, like exercise, signaling contraction of expiratory muscles
- The VRG sends inhibitory impulses to the apneustic center







#### 3.0.3 – The Pontine Respiratory Center

#### I. Apneustic center

- Located in the lower pons
- Stimulates the DRG → increased depth of inspiration by sending action potentials via the phrenic nerve to the inspiratory muscles

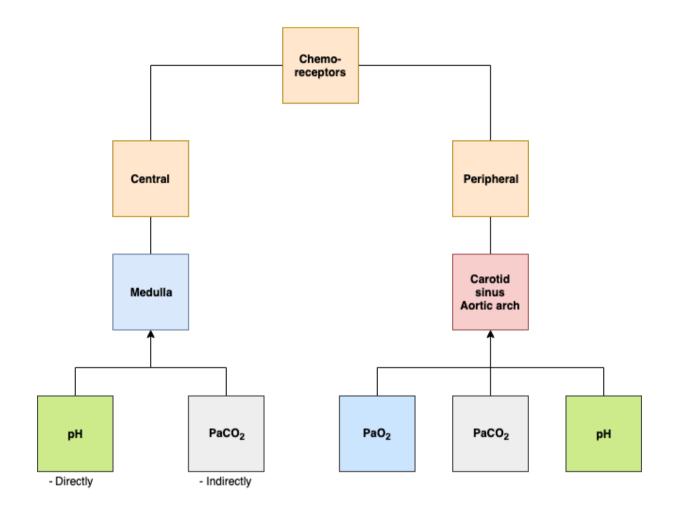
#### II. Pneumotaxic center

- Located in the upper pons
- Inhibits the apneustic center → turning off inspiration and activating passive expiration allowing for an even transition from inspiration to expiration

#### **CLINICAL CORRELATION**

<u>Q:</u> "A patient presents at the emergency ward gasping for breath. Physical examination of the patient reveals prolonged deep inspiration followed by a brief and insufficient expiration. What part of the brain is damaged?"

<u>A:</u> The patient is presenting with symptoms of **apneusis**, indicating damage to the upper pons and the pneumotaxic center.


Damage to the pneumotaxic center leads to loss of inhibition of the apneustic center, resulting in continuous inspiration.



# 3.1 – Chemoreceptors

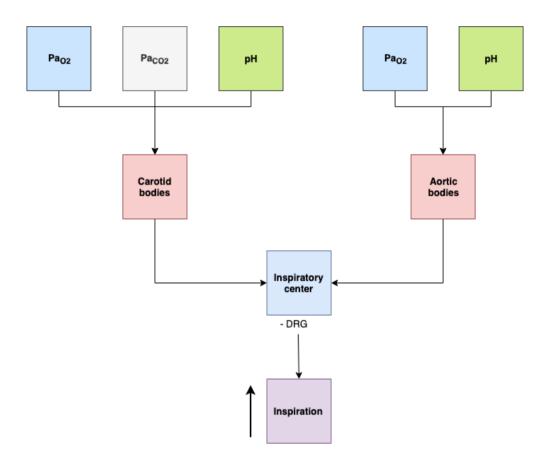
#### 3.1.1 – Overview

- Chemoreceptors detect changes in Pa<sub>02</sub>, Pa<sub>c02</sub>, and arterial pH and send this sensory information to the brain stem.





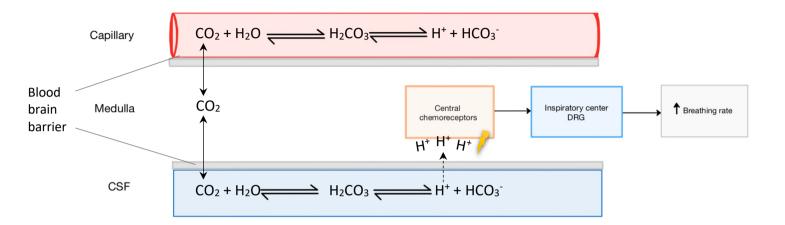
### 3.1.2 – Peripheral Chemoreceptors


- The goal of the peripheral chemoreceptors is to detect any changes in  $\mathsf{Pa}_{02},\,\mathsf{Pa}_{C02}\,\text{or}$  arterial pH
- Stimulation leads to an increase in respiratory rate

### I. The carotid bodies

- Located in the bifurcation of the common carotid arteries
- Stimulated by decreased Pa<sub>02</sub> (< 60 mmHg), increased Pa<sub>c02</sub> and decreased arterial pH
- The peripheral chemoreceptors of the carotid bodies can also be called the **glomus** type I cells

### II. The aortic bodies


- Located in the aortic arch
- Stimulated by decreased Pa<sub>02</sub> and increased Pa<sub>c02</sub>





#### 3.1.3 – Central Chemoreceptors

- Located on the ventral surface of the medulla
- The main drive of normal ventilation
- Increased  $Pa_{CO2} \rightarrow$  increased H<sup>+</sup> in cerebrospinal fluid (CSF)  $\rightarrow$  decreased pH in CSF
- Central chemoreceptors detect decreased pH in CSF → stimulation of the inspiratory center that increases respiratory rate to get rid of excess CO<sub>2</sub>



#### **CLINICAL CORRELATION**

Q: "A patient is admitted to the hospital after overdosing on morphine. He is presenting with hypoventilation and a Pa<sub>02</sub> of 55 mmHg. To increase the Pa<sub>02</sub> you give the patient oxygen. Suddenly your patient stops breathing. What happened?"

A: - Morphine, an opioid, inhibits the central chemoreceptors and causes hypoventilation (decreased respiratory rate)
 - Hypoventilation leads to increased Pa<sub>CO2</sub> and decreased Pa<sub>O2</sub>.
 - Since morphine inhibits the central chemoreceptors, they will not respond to the increased Pa<sub>CO2</sub>.

- When Pa<sub>02</sub> drops below 60 mmHg the peripheral chemoreceptors are activated, increasing the respiratory rate to increase Pa<sub>02</sub>.

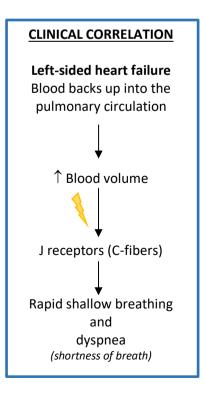
- Treatment with oxygen rapidly rises Pa<sub>02</sub> above 60 mmHg and there is no longer stimulation of the peripheral chemoreceptors. Now both central and peripheral chemoreceptors are inhibited, and the patient stops breathing.



## 3.2 – Other Receptors

|                                  | Lung stretch<br>receptors  | Joint and muscle<br>receptors        | Irritant receptors                 | Juxtacapillary <sup>2</sup><br>receptors                |
|----------------------------------|----------------------------|--------------------------------------|------------------------------------|---------------------------------------------------------|
| Туре                             | Mechanoreceptor            | Mechanoreceptor                      | Rapidly adapting<br>receptors      | Sensory nerve<br>endings                                |
| Location                         | Airway smooth<br>muscle    | Joints and muscles                   | Between airway<br>epithelial cells | Alveolar walls                                          |
| Stimulation                      | Distension of the<br>lungs | Movement of limbs<br>during exercise | Noxious chemicals<br>and particles | - ↑ Blood<br>volume<br>- ↑ Interstitial<br>fluid volume |
| Effect on<br>respiratory<br>rate | $\downarrow$               | Ŷ                                    | ¢                                  | ↑ (                                                     |
| Reflexes                         | Hering-Breuer reflex       |                                      | Coughing reflex <sup>1</sup>       |                                                         |

<sup>1</sup>Caused by constriction of bronchial smooth muscle


<sup>2</sup>Juxta means close to/near; juxtacapillaries = close to capillaries, they are also called pulmonary **C-fiber** receptors

### I. Hering-Breuer reflex

- Activated by stretch receptors in the wall of bronchi and bronchioles, when tidal volume > 1.5 liters (3 times that of normal  $V_T$ )
- It functions to protect the lungs from overinflation
- Effects: Turns off inspiration and prolongs expiratory time

### II. Juxtacapillary receptors (C-fibers)

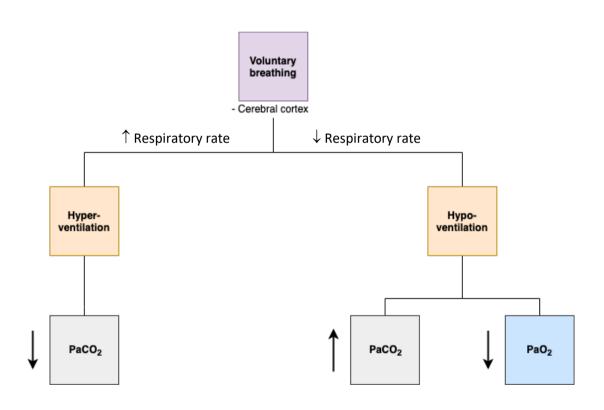
- Stimulation of C-fibers leads to rapid shallow breathing, bronchoconstriction, apnea and muscle relaxation





## 3.3 – Voluntary Breathing

## I. Definition


- The cerebral cortex can override the brain stem by sending impulses to the respiratory motor neurons via the **cortical spinal tract** activating impulses innervating muscles of inspiration.

## II. Hypoventilation

- **Definition:** Respiratory rate below 12
- Decreased respiratory rate  $\rightarrow$  increased Pa<sub>CO2</sub>  $\rightarrow$  decreased arterial pH, respiratory acidosis

### III. Hyperventilation

- **Definition:** Respiratory rate above 20
- Increased respiratory rate  $\rightarrow$  decreased Pa<sub>CO2</sub>  $\rightarrow$  increased arterial pH, respiratory alkalosis





## 3.4 – Test Yourself

### 1) Connect the correct center with its location in the brain stem.

| Expiratory center  | Upper pons    |
|--------------------|---------------|
| Apneustic center   | Medulla - VRG |
| Inspiratory center | Medulla - DRG |
| Pneumotaxic center | Lower pons    |

### 2) Which of the following does NOT stimulate the inspiratory center?

- a) Muscle and joint receptors
- b) Pneumotaxic center
- c) Glomus type I cells
- d) Central chemoreceptors

### 3) Which medullary center contains both inspiratory and expiratory neurons?

- a) The center located in the dorsal respiratory group
- b) The center that inhibits the apneustic center
- c) The center that is inactive during normal quiet breathing
- d) The center that maintains the rate of inspiration

### 4) Which of the following causes inhibition of the apneustic center?

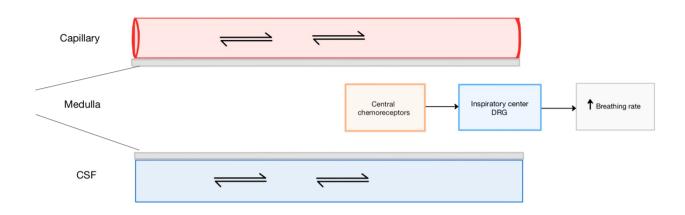
- a) Apneusis
- b) Passive expiration
- c) Activation of inspiratory center
- d) Increased action potential via the phrenic nerve

#### 5) True or False.

| Aortic bodies are stimulated when the $PaO_2$ is 70 mmHg          | T/F |
|-------------------------------------------------------------------|-----|
| Central chemoreceptors are directly stimulated by CO <sub>2</sub> | T/F |
| Irritant receptors are also called rapidly adapting receptors     | T/F |
| Hypoventilation leads to $\downarrow$ Pa $_{co2}$                 | T/F |

#### 6) Choose the correct statement.

- a) C-fibers are also known as juxtaglomerular receptors
- b) The Hering-Breuer reflex is activated when  $V_T > 1,5$  liters
- c) Lung stretch receptors increase respiratory rate
- d) Rapidly adapting receptors are found in airway smooth muscle


## 7) Fill in the blanks.

a) Symptoms of \_\_\_\_\_\_ are prolonged deep inspiration followed by a brief, insufficient

- expiration. This is caused by damage to the \_\_\_\_\_\_ center.
- b) Hyperventilation leads to  $\_\_$  Pa<sub>CO2</sub>
- c) Hypoventilation leads to  $\_\_$  Pa<sub>CO2</sub> and  $\_\_$  Pa<sub>O2</sub>
- d) The posterior neurons of the DRG receive information from the \_\_\_\_\_



## 8) Finish the central chemoreceptor activation pathway.



### 9) Fill in the blanks.

The central chemoreceptors are \_\_\_\_\_\_ stimulated by  $CO_2$  and \_\_\_\_\_\_ stimulated by  $H^+$  (decreased pH).

### 10) Fill in the table.

|             |                   | Joint and muscle   |                   | Juxtacapillary <sup>2</sup> |
|-------------|-------------------|--------------------|-------------------|-----------------------------|
|             |                   | receptors          |                   | receptors                   |
| Туре        | Mechanoreceptor   |                    | Rapidly adapting  |                             |
|             |                   |                    | receptors         |                             |
| Location    |                   | Joints and muscles |                   | Alveolar walls              |
| Stimulation | Distension of the |                    | Noxious chemicals | Blood volume                |
|             | lungs             |                    | and particles     | Interstitial                |
|             |                   |                    |                   | fluid volume                |
| Effect on   |                   |                    |                   |                             |
| respiratory |                   |                    |                   |                             |
| rate        |                   |                    |                   |                             |
| Comments/   | Hering-Breuer     |                    | Coughing reflex   |                             |
| reflexes    | reflex            |                    |                   |                             |

## Section 4 – Integrative Functions

4.0 – Exercise 4.1 – High Altitude

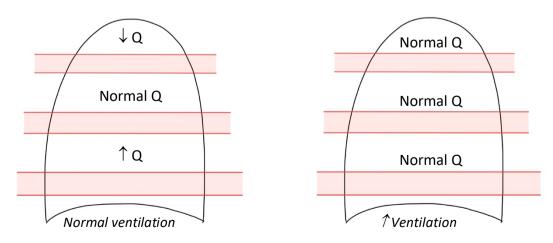
4.2 – Test Yourself

#### 4.0 – Exercise

#### I. Hyperpnea

- <u>Definition</u>: Increase in depth and/or respiratory rate without changing the *arterial* blood chemistry
- In physiological conditions; increased oxygen demand during exercise or lack of oxygen in high altitudes

### II. Increased oxygen demand

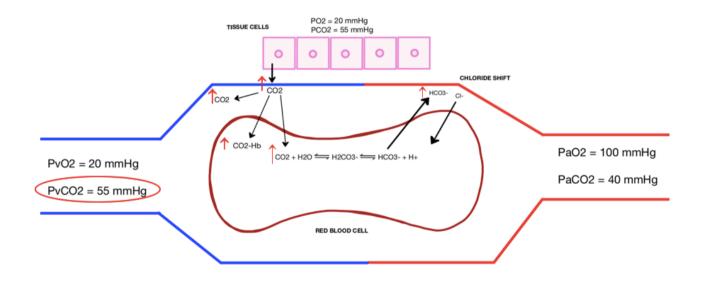

- During exercise, there is increased muscle work which requires ATP
- Increased muscle work  $\rightarrow$  increased ATP utilization  $\rightarrow$  increased oxygen demand
- During anaerobic exercise oxygen demand overrides oxygen supply to tissue → production of lactic acid and decreased pH
- Decreased pH activates carotid chemoreceptors → increased ventilation and increased oxygen

### III. Increased ventilation

- Contraction of muscles stimulate muscle-joint receptors which send signals to the DRG → increased respiratory rate
- During exercise VRG is also activated leading to stimulation of expiratory muscles
- Increased ventilation and expiratory force → increased oxygenation of *all* parts of the lung → increased gas exchange and decreased physiological dead space

## IV. Increased cardiac output

- Normal: 5 L/min
- **<u>Exercise</u>**: Up to 6x normal CO (≈ 30 L/min)
- <u>Effects</u>: Increased perfusion (Q) of lungs from right ventricle → increased gas exchange






## V. Gas exchange at tissue site

- No change in *arterial* P<sub>02</sub> and P<sub>C02</sub>
- Change in venous P<sub>CO2</sub>
- Tissue P<sub>02</sub> is decreased and tissue P<sub>C02</sub> is increased
- Venous P<sub>CO2</sub> is increased due to excess production of CO<sub>2</sub> by exercising muscle cells

|                         | Normal conditions | Exercise     |
|-------------------------|-------------------|--------------|
| Pa <sub>02</sub>        | 100 mmHg          | No change    |
| Pa <sub>co2</sub>       | 40 mmHg           | No change    |
| Tissue P <sub>02</sub>  | 40 mmHg           | $\downarrow$ |
| Tissue P <sub>co2</sub> | 47 mmHg           | $\uparrow$   |
| Venous P <sub>02</sub>  | 40 mmHg           | $\downarrow$ |
| Venous P <sub>CO2</sub> | 47 mmHg           | $\uparrow$   |

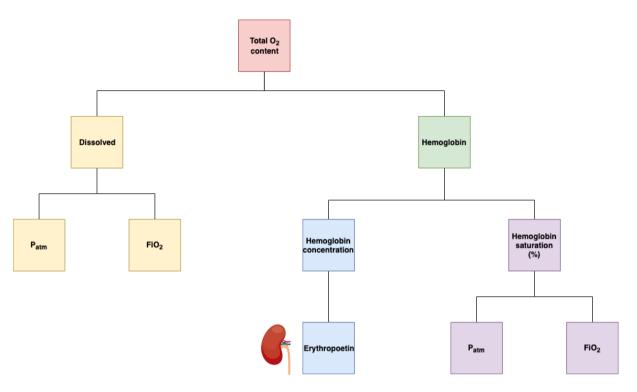




## VI. Bohr effect

- **Definition:** Increased CO<sub>2</sub> and decreased pH
- **Exercise on CO<sub>2</sub> levels:** Increased metabolism will increase in venous, hemoglobin and red blood cell CO<sub>2</sub> concentration
- Effects of increased venous CO2: Decreased pH
- <u>Effects on hemoglobin</u>: Decreased affinity of hemoglobin to oxygen and increased oxygen-delivery to tissues

## VII. 2,3 BPG


- Increased production by red blood cells during hypoxia
- <u>Effects on hemoglobin</u>: Decreased affinity of hemoglobin to oxygen and increased oxygen-delivery to the tissues

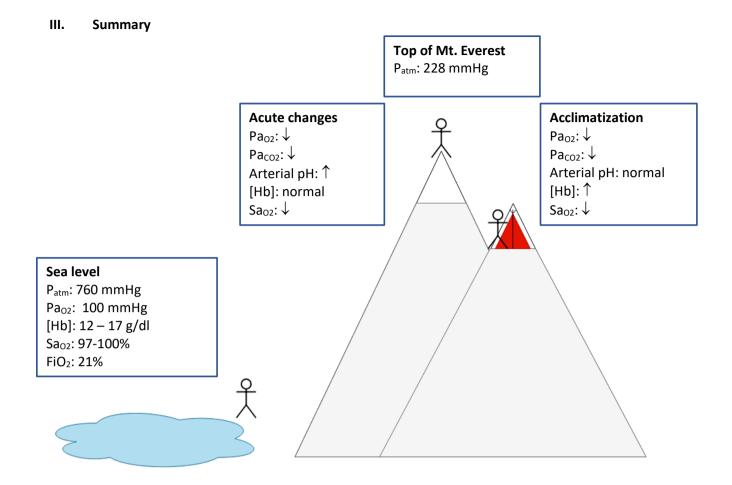


# 4.1 – High Altitude

## $\textbf{4.1.1} - \textbf{O}_{2} \text{ content dependent factors}$

Total oxygen content =  $Pa_{02}$  + [Hb] +  $Sa_{02}$ 




## I. Acute changes

- Decreased  $Pa_{02}$  is due to low  $P_{atm} \rightarrow activation of peripheral chemoreceptors <math>\rightarrow \uparrow RR$ and **hyperventilation**
- Decreased Paco2 due to hyperventilation
- Increased arterial pH, respiratory alkalosis, due to decreased CO<sub>2</sub>
- Hemoglobin concentration is unaffected
- Decreased Hb saturation due to low P<sub>atm</sub>

### II. Acclimatization

- Decreased Pa<sub>02</sub> due to low P<sub>atm</sub>
- Decreased Pa<sub>CO2</sub> due to persistent hyperventilation
- **Arterial pH stabilizes** due to compensatory increase in HCO<sub>3</sub><sup>-</sup> excretion from the kidney (compensatory metabolic acidosis)
- Increased hemoglobin concentration, **polycytemia**, is due to activation of erythropoietin in kidney due to decreased O<sub>2</sub> content. Erythropoietin promotes production of RBC in bone marrow
- Decreased Hb saturation due to low Patm





|                   | Acute changes | Acclimatization |
|-------------------|---------------|-----------------|
| PaO <sub>2</sub>  | $\rightarrow$ | $\downarrow$    |
| PaCO <sub>2</sub> | $\rightarrow$ | $\downarrow$    |
| Arterial pH       | $\uparrow$    | normal          |
| [Hb]              | normal        | $\uparrow$      |
| Hb saturation (%) | $\rightarrow$ | normal          |



# 4.2 – Test Yourself

## 1) Fill in the correct answer.

During exercise, there is \_\_\_\_\_\_ (increased/decreased) muscle exertion. The working muscle requires  $O_2$  to produce \_\_\_\_\_\_ (lactic acid/ATP), resulting in \_\_\_\_ (increased/decreased)  $O_2$  demand.

## 2) What receptor is activated during exercise (that is inactive during normal, quiet breathing)?

- a) Dorsal Respiratory Group
- b) Pneumotaxic center
- c) Central chemoreceptors
- d) Ventral Respiratory Group

3) Explain why perfusion (Q) in the lungs increases with increased ventilation.

## 4) Select the correct response to exercise.

- a) PaO<sub>2</sub> increases
- b) Venous PCO<sub>2</sub> has no change
- c) PaCO<sub>2</sub> decreases
- d) Tissue PO<sub>2</sub> decreases

## 5) True or false.

| a) 2,3-BPG increases oxygen affinity to hemoglobin                                   | T/F |
|--------------------------------------------------------------------------------------|-----|
| b) In response to increased oxygen demand more 2,3-BPG is produced                   | T/F |
| c) The Bohr effect refers to a change in oxygen-hemoglobin dissociation              | T/F |
| curve due to changes in CO <sub>2</sub> , pH, and 2,3-BPG                            |     |
| e) O <sub>2</sub> -Hemoglobin dissociation curve shifts to the right during exercise | T/F |

6) Place the correct responses to acute changes and acclimatization to high altitude. The responses may be used once, twice or not at all.

| Acute changes | Acclimatization |
|---------------|-----------------|
|               |                 |
|               |                 |
|               |                 |
|               |                 |
|               |                 |
|               |                 |

↓ PaO<sub>2</sub>, ↑ PaCO<sub>2</sub>, hyperventilation, hypoventilation, respiratory alkalosis, respiratory acidosis, normal pH, ↓ Hb saturation, ↑ Hb saturation, normal Hb concentration, ↑ Hb concentration, ↓ Hb concentration



## 7) Choose the correct statement.

a) Exposure to high altitude leads to hypoventilation

b) Decrease in atmospheric pressure leads to increased hemoglobin saturation

c) pH stabilized back to normal during acclimatization due to increased  $HCO_3$  excretion from the kidneys

d) Exposure to high altitude leads to left shift of the oxygen-hemoglobin dissociation curve

## 8) Choose the correct statement describing hypoxemia.

- a) Respiratory rate above 20 breaths/minute
- b) Insufficient levels of Pa<sub>02</sub>
- c) Respiratory rate below 12 breaths/minute
- d) Insufficient oxygen at the cellular level

