

How to we express the **amount** of gas present in the alveolus and blood?

Partial pressure

Outside

$$P_{O2} = Fi_{O2} \times P_{atm}$$

= 0.21 x 760 mmHg

Conducting zone

$$P_{O2} = Fi_{O2}x(P_{atm} - P_{H2O})$$

$$Pi = 0.21 x(760 - 47) mmHg$$

Respiratory zone

$$PA_{O2} = Pi - (P_{CO2}/R)$$

= 150 - (40/1)

150mmHg

Pi = Partial pressure of inspired oxygen

100mmHg

Venous blood: Pa(O₂)= 40 mmHg Pa(CO₂)=47 mmHg

"If the partial pressure of carbon dioxide in blood (Pa_{CO2}) is 47 mmHg and the partial pressure of carbon dioxide in the alveolus (PA_{CO2}) is 40 mmHg, in which direction will the gas diffuse?"

- A. From the alveolus into the blood
- B. From the blood into the alveolus
- C. The partial pressure gradient is too small for diffusion to occur
- D. CO₂ will continue to diffuse until the partial pressure in the alveolus reaches 47 mmHg
- E. A and C
- F. B and D

Key points

	PA _{O2}	PA _{CO2}
Directly proportional to	Pa _{O2}	Pa _{CO2}
Main determinants	- P _{atm} - Fi _{O2}	- V _A ¹ - Metabolism

$$PA_{CO2} = \frac{Metabolism}{V_A}$$

Fick's law of diffusion

Definition

- How fast a gas will diffuse across a permeable membrane

Lung - factors determining diffusion rate

Lung	Abbreviation	Comment
Surface area	Α	- Determined by number of alveoli
Membrane thickness	Δχ	- Interstitial space

Gas - factors determining diffusion rate

Gas	Abbreviation	Comment
Solubility	S	CO > CO ₂ >> O ₂
Partial pressure gradient	$P_1 - P_2$	

Fick's law - Equation

$$D = A \times \Delta P \times S$$

$$\Delta \times$$

$$D = \Delta P \times S$$

Which gas will diffuse first? O₂ or CO₂?

$$O_2$$
D= Δ **P x S**

$$D = (100-40) \times 1$$

$$D = 60$$

$$CO_2$$
 $D = \Delta P \times S$
 $D = (47-40) \times 20$
 $D = 140$

Even though O_2 has a larger pressure gradient, CO_2 is 20 times more soluble than $O_2 \rightarrow CO_2$ will therefore diffuse first!

Oxygen delivery to the tissues (D_LO₂)

D_LO₂ - Example

 "How will mild anemia affect the oxygen delivery in a young athlete?"

Oxygen-Hemoglobin relationship

PO ₂ (mmHg)	Saturation (%)	
100	> 97	
40	75	
25	50	

Oxygen – Hemoglobin Dissociation Curve

Hemoglobin saturation (%)

PO ₂ (mmHg)	Saturation (%)
100	> 97
40	75
25	50

Decreased affinity of hemoglobin to oxygen

Normal

 $P_{50} = 25 \text{ mmHg}$

Decreased affinity

 $P_{50} = 40 \text{ mmHg}$

Right shift = Muscle

Hemoglobin saturation (%)

Right shifts		
Factor	Comment	
\uparrow PCO $_2$ and \uparrow H+ (\downarrow pH)	- 个Metabolic activity	
(Bohr effect)	- 个Oxygen demand	
个Temperature	- 个Metabolic activity- 个Heat production- 个Oxygen demand	
个 2,3-diphosphoglycerate (2,3-DPG)	Product of RBC glycolysisProduced during hypoxia	

Increased affinity of hemoglobin to oxygen

Normal

$P_{50} = 25 \text{ mmHg}$

Increased affinity

 $P_{50} = 11 \text{ mmHg}$

Left shift = Pulmonary circulation (after gas exchange)

Left shift		
Variable	Comment	
\downarrow PCO $_2$ and \downarrow H+ (\uparrow pH)	- ↓Metabolic activity - ↓Oxygen demand	
↓ Temperature	 - ↓ Metabolic activity - ↓ Heat production - ↓ Oxygen demand 	
↓ 2,3-diphosphoglycerate (2,3-DPG)	- ↓ Oxygen demand	

Select the correct statement concerning P_{50} when the O_2 -hemoglobin dissociation curve is shifted to the right:

- A. It is the same as under normal circumstances
- B. It is increased
- C. It is decreased
- D. P₅₀ is a gas transported in blood
- E. Only D is correct

CA: Carbonic anhydrase

Most of the CO₂ transported in the blood is:

- A. dissolved in plasma
- B. in carbamino compounds formed from plasma proteins
- C. in carbamino compounds formed from hemoglobin
- D. bound to Cl-
- E. Transported as HCO3⁻

