How to we express the **amount** of gas present in the alveolus and blood? Partial pressure #### Outside $$P_{O2} = Fi_{O2} \times P_{atm}$$ = 0.21 x 760 mmHg ### **Conducting zone** $$P_{O2} = Fi_{O2}x(P_{atm} - P_{H2O})$$ $$Pi = 0.21 x(760 - 47) mmHg$$ #### **Respiratory zone** $$PA_{O2} = Pi - (P_{CO2}/R)$$ = 150 - (40/1) 150mmHg Pi = Partial pressure of inspired oxygen 100mmHg Venous blood: Pa(O₂)= 40 mmHg Pa(CO₂)=47 mmHg "If the partial pressure of carbon dioxide in blood (Pa_{CO2}) is 47 mmHg and the partial pressure of carbon dioxide in the alveolus (PA_{CO2}) is 40 mmHg, in which direction will the gas diffuse?" - A. From the alveolus into the blood - B. From the blood into the alveolus - C. The partial pressure gradient is too small for diffusion to occur - D. CO₂ will continue to diffuse until the partial pressure in the alveolus reaches 47 mmHg - E. A and C - F. B and D # Key points | | PA _{O2} | PA _{CO2} | |--------------------------|--|---| | Directly proportional to | Pa _{O2} | Pa _{CO2} | | Main determinants | - P _{atm}
- Fi _{O2} | - V _A ¹
- Metabolism | $$PA_{CO2} = \frac{Metabolism}{V_A}$$ ## Fick's law of diffusion ### Definition - How fast a gas will diffuse across a permeable membrane ## Lung - factors determining diffusion rate | Lung | Abbreviation | Comment | |--------------------|--------------|-----------------------------------| | Surface area | Α | - Determined by number of alveoli | | Membrane thickness | Δχ | - Interstitial space | ## Gas - factors determining diffusion rate | Gas | Abbreviation | Comment | |---------------------------|--------------|--| | Solubility | S | CO > CO ₂ >> O ₂ | | Partial pressure gradient | $P_1 - P_2$ | | # Fick's law - Equation $$D = A \times \Delta P \times S$$ $$\Delta \times$$ $$D = \Delta P \times S$$ # Which gas will diffuse first? O₂ or CO₂? $$O_2$$ **D=** Δ **P x S** $$D = (100-40) \times 1$$ $$D = 60$$ $$CO_2$$ $D = \Delta P \times S$ $D = (47-40) \times 20$ $D = 140$ Even though O_2 has a larger pressure gradient, CO_2 is 20 times more soluble than $O_2 \rightarrow CO_2$ will therefore diffuse first! # Oxygen delivery to the tissues (D_LO₂) # D_LO₂ - Example "How will mild anemia affect the oxygen delivery in a young athlete?" ## Oxygen-Hemoglobin relationship | PO ₂ (mmHg) | Saturation (%) | | |------------------------|----------------|---------| | 100 | > 97 | | | 40 | 75 | | | 25 | 50 | | ### Oxygen – Hemoglobin Dissociation Curve ## Hemoglobin saturation (%) | PO ₂ (mmHg) | Saturation (%) | |------------------------|----------------| | 100 | > 97 | | 40 | 75 | | 25 | 50 | ## Decreased affinity of hemoglobin to oxygen #### Normal $P_{50} = 25 \text{ mmHg}$ ### **Decreased affinity** $P_{50} = 40 \text{ mmHg}$ ### Right shift = Muscle ## Hemoglobin saturation (%) | Right shifts | | | |--|---|--| | Factor | Comment | | | \uparrow PCO $_2$ and \uparrow H+ (\downarrow pH) | - 个Metabolic activity | | | (Bohr effect) | - 个Oxygen demand | | | 个Temperature | - 个Metabolic activity- 个Heat production- 个Oxygen demand | | | 个 2,3-diphosphoglycerate (2,3-DPG) | Product of RBC glycolysisProduced during hypoxia | | ## Increased affinity of hemoglobin to oxygen #### **Normal** ### $P_{50} = 25 \text{ mmHg}$ ### **Increased affinity** $P_{50} = 11 \text{ mmHg}$ ### **Left shift** = Pulmonary circulation (after gas exchange) | Left shift | | | |--|--|--| | Variable | Comment | | | \downarrow PCO $_2$ and \downarrow H+ (\uparrow pH) | - ↓Metabolic activity
- ↓Oxygen demand | | | ↓ Temperature | - ↓ Metabolic activity - ↓ Heat production - ↓ Oxygen demand | | | ↓ 2,3-diphosphoglycerate (2,3-DPG) | - ↓ Oxygen demand | | Select the correct statement concerning P_{50} when the O_2 -hemoglobin dissociation curve is shifted to the right: - A. It is the same as under normal circumstances - B. It is increased - C. It is decreased - D. P₅₀ is a gas transported in blood - E. Only D is correct **CA:** Carbonic anhydrase # Most of the CO₂ transported in the blood is: - A. dissolved in plasma - B. in carbamino compounds formed from plasma proteins - C. in carbamino compounds formed from hemoglobin - D. bound to Cl- - E. Transported as HCO3⁻