Overview of Kidney

By Adriana Nudga

Check list

□ Kidney overview

□Osmolarity

□Urine concentration

Kidney functions

- Excrete waste products: urea, uric acid, creatinine
- Water and electrolytes balance
- Acid/base balance
- Secrete:
 - Hormone: erythropoietin (blood cells growth)
 - Enzyme: Renin (convert angiotensinogen to angiotensin 1)
- Hydroxylate 25-hydroxy-vit D to active form vitamin D (1,25 dihydroxy-vit-D)

The Nephron

4 functions:

- Filtration
 - Blood
 - Starling forces
 - GFR
- Reabsorption
 - Tubular fluid -> blood
 - Solutes + water
- Secretion
 - Blood -> tubular fluid
 - Active transport
- Excretion
 - Urine
 - Filtered and not reabsorbed

Renal capsule

Afferent

Effernet blood

Filtration

Substances that pass through into the tubular fluid:

glucose AA water salts (

Small solutes are filtered more than big solutes

- Negatively charged endothelium
- Repels negatively charged solutes, atracts positevely charged solutes

Proximal tubule

Resorption of water (70-80%)
Reabsorption Na+ (around 2/3 of filtered Na+)

- Resorption of ions (Na+, Cl-), glucose, amino acids
- •Bicarbonate reabsorption
- •Membrane transporters
- •Resorption of some metabolites and drugs
- •Secretion of ammonia, urea, exogenous compounds

Transports in proximal tubule

- 100% of filtered glucose
- 100% of amino acid
- 85% of filtered bicarbonate
- Most of phosphate, citrate and lactate

studyai

 Extensive sodium reabsorption

Transport HCO3

- Sodium (Na+) is absorbed from lumen in exchange for hydrogen (H+)
- Hydrogen combines with bicarbonate

 creating water and CO2
- 3. Water and CO2 diffuses back into the epithelial cell of the proximal tubule
- Water and CO2 is then reconverted to H+ and HCO3 –
- 5. H+ is transported to the lumen via the Na+ -H+ exchanger
- HCO3 is reabsorbed to blood via facilitated diffusion

Glucose

- Na2 -Glucose transporter (SGLT)
 - secondary active transport
 - depends on luminal Na+
 - stimulated by [Na+]
 - linked to uptake of Na+
 - depends on rate of ATP production
- facilitated diffusion
- GLUT 1 and GLUT 2

Glucose titration curve

- Normal glucose lv. and proper functioning kidneys show no glucose in urine
- More glucose in blood = More glucose is filtered
- Threshold at 200mg/dL (threshold is level at which glucose starts to be seen in urine)
- Splay (wiggle room for threshold cause some nephrons reach Tm faster than others)
- Fully saturated at 350mg/dL

Clinical: Glucosuria

Tm = maximal reabsorption rate GLU = carriers of GLU are saturated

Loop of Henle

Descending limp

highly permeable to water via AQP1 channels.

Uses counter current multiplication (<u>https://www.youtube.com/watc</u> <u>h?v=cYyJF_aSC6o</u>)

Very low amounts of urea, Na⁺ and other ions reabsorbed.

Ascending limp

2 parts thin and thick Impermiable to water

Thin: Passive reabsorption Na+ interstitium becomes concentrated with ions, increasing the osmolarity

Thick: Na+ reabsorption is active - the driver is the Na⁺/K⁺ ATPase

Na+/K+/Cl- simport into the

counter current multiplication

Remember osmolarity: water moves from area of low solute to high solute. (watlower osmotic pressure to higher osmotic pressure.)

Thin descending limb	Thin Ascending limb	Thick Ascending limb
Permeable to water and small solutes (as NaCl and urea)	Permeable to NaCl Impermeable to water	Net reabsorption of Na+ , K+ and ClImpermeable to water
Passive diffusion of solutes	Passive diffusion of solutes	Active reabsorption by Na+ - K+ -2Clcotransporter.
Water moves out, solutes move in	Solutes moves out, water remains in the lumen	Solute is reabsorbed, water remains in the lumen
Filtrate becomes more hyperosmotic as it moves down the thin descending limb	Filtrate becomes hypoosmotic as it moves up the thin ascending limb	Tubular fluid become more diluted

Distal tubule

- •Reabsorption of Na+, Cl-
- •Secretion of K+, H+
- •Controlled by aldosterone
- Acidifies urine

Collecting duct

Principal cells

Reabsorption Na+ via Epithelial Na+ channels
Secretion K+
H2O reabsorption (AQP2)
Na⁺/K⁺-ATPase pumps basal

Intercalated cells

a-intercalated cells:K+ reabsorptionH+ secretion

studyaid

Segm	nent/cell type	Major functions	Water permeability
proxi	mal tubule	Isosmotic reabsorption of solute and water	Permeable
Thin descending limb		Reabsorption H2O and NaCl from urine	Permeable
Thin	ascending limb	Reabsorption of NaCl Dilution of tubular fluid Single effect of countercurrent multiplication Reabsorption of Ca2+ and Mg2+	Impermeable
Early	distal tubule	Reabsorption of NaCl Dilution of tubular fluid	Impermeable
Late ducts	distal tubule and collecting		
	Principal cells	Reabsorption of NaCl K+ secretion Regulate water reabsorption	Permeable with ADH present
	α-intercalated cells	K+ reabsorption H+ secretion	Not relevant

Woo-clap!!

Connect to www.wooclap.com/ZGZYXK

You can participate

Urine concentration

- The nephrons of the **kidneys** process blood and create **urine** through a process of filtration, reabsorption, and secretion.
- Urine is about 95% water and 5% waste products.
- Nitrogenous wastes excreted in **urine** include urea, creatinine, ammonia, and uric acid.
- These wastes come from PT cells in response to acid/base balance.

Proximal tubule

Resorption of water (70-80%)
Reabsorption Na+ (around 2/3 of filtered Na+)
Release ammonia

Loop of henle

descending part: h2O reabsorption
ascending part: Na+, NaCl reabsorption

Distal tubule

•Reabsorption of Na+, Cl-

•Secretion of K+, H+

•Acidifies urine via reabsorbing portion of the filtered HCO3-(base) from PT

Collecting duct

•Resorption of water via Membrane channels (aquaporins),

mediated by ADH

Intercalated cells make ammonium

•Principal cells: Na+ channels, K+ channels H2O reabsorption (AQP2)

See section 5 - Reabsorption and secretion, part 5.1.1 - Passive reabsorption: Urea

RAAS

Renin-angiotensin-aldosterone system

Blood Pressure Regulation

Baroreceptor Reflex

- Neurally mediated
- Fast
- Respond to change in Arterial pressure (Pa)

RAAS

- Hormonally mediated
- Slow
- Respond to change in Arterial pressure (Pa)

RAAS

- 1. Kidney sense low blood pressure
- 2. Release renin
- 3. Renin converts agiotensinogen -> angiotensin 1
- 4. ACE (angiotensin-converting enzyme) converts angiotensin 1 -> angiotensin 2
- 5. Angiotensin 2 stimulates aldosterone, ADH and thirst
- 6. Aldosterone cause kidney reabsorption of Na+, ADH increases water uptake
- 7. Water follows sodium
- 8. Blood volume increases, pressure increases

Woo-clap!!

Connect to www.wooclap.com/ZGZYXK

You can participate

Good luck :)

