# Ventilation/ Perfusion 

By Justyna Kacarow

## Today's Focus

How your body oxygenates the blood in your lungs

## Ventilation (V) -

 air flow into the lungsPerfusion (Q) blood flow into the lungs

shutterstock.com • 1610265454

A - alveolar
a - capillary

## Pulmonary Blood Flow

Not like systemic blood flow!

- Lower blood pressure ( $25 / 8$ !)
- Lower resistance
- Hypoxic vasoconstriction



## Hypoxic Vasoconstriction

- Decreases in $\mathrm{PA}_{\mathrm{O} 2}$ causes pulmonary vasoconstriction
- Opposite effect is seen in other vascular beds
- Redirects blood flow to well-ventilated regions of the lung
- Protective in certain lung diseases (no change in pulmonary resistance)
- Mechanism:
- Determined by ALVEOLAR $\mathrm{O}_{2}\left(\mathrm{PA}_{\mathrm{O} 2}<70 \mathrm{~mm} \mathrm{Hg}\right)$
- May also be determined by NO


## Other Regulators

Thromboxane A2

- vasoconstrictor

Prostacyclin (Prostaglandin 12)

- vasodilator


## Leukotrienes

- bronchoconstrictor


## Summary

| Substance | Concentration | Lumen diameter |
| :--- | :--- | :--- |
| Oxygen | Decreased $\mathbf{\downarrow}$ | Decreased $\mathbf{\downarrow}$ |
| NO | Increased $\boldsymbol{\uparrow}$ | Increased $\mathbf{\uparrow}$ |
| Thromboxane $\mathbf{A}_{2}$ | Increased $\boldsymbol{\uparrow}$ | Decreased $\mathbf{\downarrow}$ |
| Prostacyclin | Increased $\boldsymbol{\uparrow}$ | Increased $\mathbf{\uparrow}$ |
| Leukotrienes | Increased $\boldsymbol{\uparrow}$ | Decreased $\mathbf{\downarrow}$ |

## Distribution of Blood Flow



Uneven due to gravity

- Zone 1:
- Alveolar pressure $(\mathrm{PA})>$ arterial pressure $(\mathrm{Pa})>$ venous pressure (Pv)
- Low flow rate
- Zone 2:
- $\mathrm{Pa}>\mathrm{Pa}>\mathrm{Pv}$
- Flow is driven by the difference between Pa and PA , not Pa and PV
- Zone 3:
- Pa > Pv > PA
- Blood flow is driven by Pa-PV gradient
- Highest flow rate, most open capillaries


## Shunts

An amount of blood flow that is diverted or rerouted from the alveolus


$$
\begin{aligned}
& \text { Can be } \\
& \text { physiologic. } \\
& \text { 2\% of blood } \\
& \text { normally } \\
& \text { bypasses the } \\
& \text { alveoli! }
\end{aligned}
$$

## Pathological Shunting

## Right-to-Left Shunting

Left-to-Right Shunting

- ALWAYS results in
- Does NOT cause hypoxemia uncorrectable hypoxemia
- $\mathrm{Pa}_{\mathrm{CO} 2}$ changes minimally
- Eisenmenger syndrome

- $P_{02}$ increases in right ventricle
- Patent ductus arteriosus



## Diffusion of Gases



## Distribution of Air Flow



Also uneven due to gravity BUT less so than blood

V/Q = proportion of blood participating in gas exchange

## V/Q Relationships



$$
\nabla \mathrm{V} / \mathrm{Q}=\boldsymbol{\mathrm { r }} \mathrm{V} / \mathrm{Q}
$$

Average is 0.8
令 $\mathrm{V} / \mathrm{Q}=\mathrm{V} / \mathrm{Q}$

## V/Q Mismatch

## Dead Space ( $\mathrm{V} / \mathrm{Q}=\infty$ )

- Ventilated areas that are not perfused
- Alveolar gas = humidified inspired air
- $\mathrm{PA}_{\mathrm{O} 2}=150 \mathrm{~mm} \mathrm{Hg}, \mathrm{PA}_{\mathrm{CO} 2}=0$

Blod flow obstruction

## Shunt ( $\mathbf{V} / \mathbf{Q}=0$ )

- Perfused areas that are not ventilated
- Pulmonary capillary blood = mixed venous blood
- $\mathrm{PA}_{\mathrm{O} 2}=40 \mathrm{~mm} \mathrm{Hg}, \mathrm{PA}_{\mathrm{CO} 2}=46 \mathrm{~mm} \mathrm{Hg}$
"Oirway" obstruction


## Pulmonary Dead Space

## Pulmonary Embolism

- Blood clot (embolus) obstructs flow to pulmonary tissue
- No oxygen exchange can happen

Ventilated but not perfused $(\mathrm{V} / \mathrm{Q}=\infty)$


## Pulmonary Shunting

## Foreign Body Aspiration

- Children often inhale small objects
- Object blocks air flow
- No oxygen exchange can happen

Perfused but not ventilated $(\mathrm{V} / \mathrm{Q}=0)$


