# Hemodynamics

L.D. Lord Cardiovascular Physiology Seminar March 2024





The **principles** that govern **blood flow** in the cardiovascular system.







Is this patient hemodynamically stable?



# Q: What makes blood flow through the circulatory system?





# Q: What makes blood flow through the circulatory system?



### A: PRESSURE GRADIENTS



# It's not just fluids in the circulatory system that follow pressure gradients....





1. Pattern of normal blood flow

- 2. Blood Flow Equation: Flow Rate, Pressure Gradient & Resistance
- 4. Distribution of Blood in Systemic Vasculature
- 5. Flow Velocity
- 6. Laminar vs Turbulent Flow
- 7. Systemic vs Pulmonary Circulation
- 8. Practice questions (Wooclap!)



### Pattern of normal blood flow (Systemic



1. Pattern of normal blood flow

- 2. Blood Flow Equation: Flow Rate, Pressure Gradient & Resistance
- 4. Distribution of Blood in Systemic Vasculature
- 5. Flow Velocity
- 6. Laminar vs Turbulent Flow
- 7. Systemic vs Pulmonary Circulation
- 8. Practice questions (Wooclap!)





### Blood (or any fluid) flows from high to low pressure!

What provides a pressure gradient **ΔP** in the circulatory system?

The pumping action of the **heart provides** Δ**P** 



A drug <u>constricts</u> a blood vessel to half of its original radius, what is the effect on <u>resistance</u> in this particular vessel?

- a) Increase by a factor of 4
- b) No change
- c) Increase by a factor of 16
- d) Decrease by a factor of 16
- e) None of the above





A drug <u>constricts</u> a blood vessel to half of its original radius, what is the effect on <u>resistance</u> in this particular vessel?

- a) Increase by a factor of 4
- b) No change
- c) Increase by a factor of 16
- d) Decrease by a factor of 16
- e) None of the above

$$R \propto \frac{1}{F^{H}}$$

$$R \propto \frac{1}{\left(\frac{1}{2}\right)^{-1}} = \frac{1}{\frac{1}{16}} = \frac{16\times}{16}$$



*most important!* 



### But why does blood pressure eventually drop?



Blood flow through an organ is arranged in series

A physiological consequence of this is:

progressive <u>reduction</u> of blood pressure from major artery supplying the organ → major vein draining the organ

• The biggest contributors to series resistance are.....

#### **Arterioles!**



1. Pattern of normal blood flow

2. Blood Flow Equation: Flow Rate, Pressure Gradient — & Resistance

4. Distribution of Blood in Systemic Vasculature

5. Flow Velocity

- 6. Laminar vs Turbulent Flow
- 7. Systemic vs Pulmonary Circulation
- 8. Practice questions (Wooclap!)



### **Distribution of blood in the systemic**



Veins can hold a large volume of blood at <u>low pressure</u> because they have **high compliance** 

high compliance = high ability to expand

Vessels containing the **highest % of total blood volume** in the cardiovascular system? → Veins

Vessels having the largest <u>total</u> cross sectional area in the cardiovascular system -> Capillaries



If we were to line up ALL of our blood vessels one after the other, what distance would be covered?

# If we were to line up ALL of our blood vessels one after the other, what distance would be covered?

# **160,000 km**

1. Pattern of normal blood flow

2. Blood Flow Equation: Flow Rate, Pressure Gradient — & Resistance

4. Distribution of Blood in Systemic Vasculature

5. Flow Velocity

6. Laminar vs Turbulent Flow

7. Systemic vs Pulmonary Circulation

8. Practice questions (Wooclap!)



1. Pattern of normal blood flow

2. Blood Flow Equation: Flow Rate, Pressure Gradient — & Resistance

4. Distribution of Blood in Systemic Vasculature

5. Flow Velocity

- 6. Laminar vs Turbulent Flow
- 7. Systemic vs Pulmonary Circulation
- 8. Practice questions (Wooclap!)



### **Laminar vs Turbulent Flow**



Ideally, **blood flow** should be *laminar* (i.e. streamlined)

<u>Laminar flow:</u> velocity of blood flow is <u>highest</u> at the center of a blood vessel and lowest near the vessel wall

**Turbulent blood flow** is characterized physiologically by presence of **an <u>audible murmur</u>** 

Nb: some **pathologies** (thrombi, valve disorders, anemia) can cause blood flow to become **turbulent** in the affected

study

vessel

### **Laminar vs Turbulent Flow**



**Reynold's number (N<sub>R</sub>)** is a dimensionless index to predict *whether blood flow will be laminar or turbulent:* 

where

$$N_{R} = \frac{\rho dv}{\eta}$$

 $N_R$  = Reynolds number  $\rho$  = Density of blood d = Diameter of blood vessel v = Velocity of blood flow  $\eta$  = Viscosity of blood

 $N_R > 3000 \rightarrow always turbulent$  $N_R < 2000 \rightarrow always laminar$ 



1. Pattern of normal blood flow

2. Blood Flow Equation: Flow Rate, Pressure Gradient — & Resistance

4. Distribution of Blood in Systemic Vasculature

5. Flow Velocity

- 6. Laminar vs Turbulent Flow
- 7. Systemic vs Pulmonary Circulation
- 8. Practice questions (Wooclap!)



### Pulmonary Circulation vs Systemic Circulation

| Location         | Mean Pressure (mm Hg)              |  |
|------------------|------------------------------------|--|
| Systemic         |                                    |  |
| Aorta            | 100                                |  |
| Large arteries   | 100 (systolic, 120; diastolic, 80) |  |
| Arterioles       | 50                                 |  |
| Capillaries      | 20                                 |  |
| Vena cava        | 4                                  |  |
| Right atrium     | 0-2                                |  |
| Pulmonary        |                                    |  |
| Pulmonary artery | 15 (systolic, 25; diastolic, 8) 🖛  |  |
| Capillaries      | 10                                 |  |
| Pulmonary vein   | 8                                  |  |
| Left atrium*     | 2–5                                |  |



*pulmonary artery pressure* << *large systemic arteries pressure* 

#### Pulmonary circulation is coupled <u>in series</u> <u>with</u> the systemic circulation



### **Pulmonary Circulation vs Systemic**

### Circulation

|                          | Pulmonary circulation | Systemic circulation |
|--------------------------|-----------------------|----------------------|
| Pressure                 | Low                   | High                 |
| Pressure gradient        | Small <sup>1</sup>    | Large <sup>2</sup>   |
| Resistance               | Low                   | High                 |
| <b>Flow</b> <sup>3</sup> | 5 L/min               | 5 L/min              |
| <sup>1</sup> 10 mmHg     |                       |                      |
| <sup>2</sup> 93 mmHg     |                       |                      |
| <sup>3</sup> 70 kg male  |                       | lungs                |

Blood flow rate (Q) is the <u>same</u> in the **pulmonary** and **systemic circulations** since the cardiac output (CO) of the left and right heart is equal!

**Equal blood flow (Q)** can be achieved in **pulmonary** & **systemic circulations**, because while the **pressure gradient** in pulmonary circulation is **lower**, the **resistance** is also **lower**\*





## **Clinical correlation: Septic shock**



#### Case:

- -52M with AIDS
- CAP dx 5 days ago
- temp: 40C
- confusion
- RR: 30
- HR: 130
- BP: 78 / 52

### Explain these vitals? Treatment?







