Electrical Activity of the Heart

By Jakub Staniszewski

- The conduction system
 - Anatomy
 - Conduction sequence
 - Properties of nodal cells
- Non-nodal action potential
 - Phases of AP
 - Channels of the AP
 - Other channels
- Nodal action potential
 - Phases of AP
 - Channels of the AP
 - Autonomic control
- The ECG
 - Comparison to AP
 - Making waves
 - ECG components

Anatomy of the Conduction System

Sequence of Conduction & New Questions

- 1. SA node initiates an action potential. How is this AP generated?
- 2. The signal quickly spreads through the ______ How can it spread quickly atrial muscle.

study

- 3. The signal arrives at the AV node, and _____ How can conduction speed the speed of conduction <u>slows</u>.
 The speed of conduction <u>slows</u>.
- 4. The AV node conducts the signal to the bundle of His.
- 5. The signal continues <u>rapidly</u> down the Purkinje fibers.
- 6. The ventricles get the signal and contract.

Unique Properties of Nodal Cells

Automaticity

- SA node cells <u>spontaneously</u> <u>depolarize to threshold</u>, without outside stimulation.
- This creates an AP up to 100 times per minute (intrinsic rhythm).
- AV node cells also spontaneously depolarize, but their intrinsic rhythm is 40-60/minute.

<u>Gap junctions</u> are found in both myocytes and nodal cells. They allow cell-to-cell conduction.

Conduction

- The AV node conducts signals very slowly.
- This is due to narrow fibers, few gap junctions, and a slow rate of depolarization**.
- Purkinje fibers are wide, have many gap junctions, and depolarize rapidly.

- The conduction system
 - Anatomy
 - Conduction sequence
 - Properties of nodal cells
- Non-nodal action potential
 - Phases of AP
 - Channels of the AP
 - Other channels
- Nodal action potential
 - Phases of AP
 - Channels of the AP
 - Autonomic control
- The ECG
 - Comparison to AP
 - Making waves
 - ECG components

AP arrives and depolarizes to threshold potential

Non-nodal action potential

Myocytes and Purkinje cells

Upstroke and depolarization voltage-gated Na⁺ channels

- Early repolarization transient K⁺ channels (ungated K⁺ leak)
- Plateau phase 2 voltage-gated L-type Ca²⁺ channels
- 3

Non-nodal action potential Myocytes and Purkinje cells				
• Upstroke and depolarization voltage-gated Na ⁺ channels	At -65mV, massive Na ⁺ influx.	-	Ungated K ⁺ leak	
1 Early repolarization transient K ⁺ channels	Na⁺ channels inactivated.	-	K⁺ efflux	
2 Plateau phase voltage-gated L-type Ca ²⁺ channels	-	Ca ²⁺ influx	K⁺ efflux	
3 Rapid repolarization delayed rectifier K ⁺ channels	-	Ca ²⁺ channels inactivated	K⁺ efflux	
Resting phase (-90 mV) inward rectifier K ⁺ channels	-	-	K⁺ at equilibrium potential (-90mV)	y <mark>aid 🏷</mark>

Effect on hemodynamics

A long plateau phase:

- Allows enough time for the ventricles to empty during systole.
- Prevents re-excitation of the muscle before the next beat (refractory period)

The plateau phase is longer than systole. The heart muscle can completely relax before the next contraction occurs.

Other important channels in myocytes

Ryanodine receptor \rightarrow opens in response to Ca²⁺ binding, and releases more Ca²⁺ into the cytoplasm from the SR (Ca²⁺ induced Ca²⁺ release).

• This channel is responsible for triggering muscle contraction.

SERCA \rightarrow pumps Ca²⁺ back into the sarcoplasmic reticulum during the plateau phase.

• This pump ensures that the heart muscle is <u>ready for the next contraction</u>. Allows the heart muscle to relax!

Na⁺/Ca²⁺ exchanger \rightarrow pumps Ca²⁺ into the extracellular space.

• This pump ensures that the myocyte/Purkinje cell is ready for the next AP.

- The conduction system
 - Anatomy
 - Conduction sequence
 - Properties of nodal cells
- Non-nodal action potential
 - Phases of AP
 - Channels of the AP
 - Other channels
- Nodal action potential
 - Phases of AP
 - Channels of the AP
 - Autonomic control
- The ECG
 - Comparison to AP
 - Making waves
 - ECG components

Nodal action potential

SA and AV nodes

Slow spontaneous depolarization funny Na⁺ channels / T-type Ca²⁺ channels

Note that phase 0 is not as steep as in the myocyte!

Nodal action potential

SA and AV nodes

		Sodium (Na) Calcium (C		Potassium (K)	
4	Slow spontaneous depolarization funny Na ⁺ channels / T-type Ca ²⁺ channels	<u>Na⁺ funny</u> <u>channels are open</u>	T-type Ca ²⁺ channels are open	Slight K⁺ efflux	
0	True depolarization voltage-gated L-type Ca ²⁺ channels.	Na⁺ funny channels closed	<u>Ca²+ influx</u>	-	
3	Repolarization delayed rectifier K ⁺ channels	-	Ca ²⁺ channels closed	K⁺ efflux	
studuc					

Autonomic control of nodal tissue

To prove to your family that you are, indeed, learning medicine.

Aka Clinical correlate

What effect would a K⁺ channel blocker have on the <u>non-nodal</u> AP?

K⁺ efflux is responsible for repolarization

Repolarization is delayed Plateau phase is prolonged

K⁺ channel blockers prolong the refractory period, making them effective antiarrhythmic drugs. What effect would a T-type Ca²⁺ channel blocker have on the <u>nodal</u> AP?

Ca²⁺ influx is partly responsible for spontaneous depolarization

Takes longer to reach threshold SA node rate is slowed

Ca²⁺ channels are everywhere! Slowed HR is only one of many effects that CCBs exert!

- The conduction system
 - Anatomy
 - Conduction sequence
 - Properties of nodal cells
- Non-nodal action potential
 - Phases of AP
 - Channels of the AP
 - Other channels
- Nodal action potential 🗸
 - Phases of AP
 - Channels of the AP
 - Autonomic control
- The ECG
 - Comparison to AP
 - Making waves
 - ECG components

The ECG and the AP

- The ECG is a recording that is taken by placing electrodes on the skin and recording electrical activity.
- The electrical activity is the product of myocardial depolarization and repolarization.
- Phase $0 \rightarrow$ ventricular depolarization
- Phase $3 \rightarrow$ ventricular repolarization

The AP represents activity at a <u>single</u> <u>point</u>. It cannot be measured clinically.

The ECG represents activity in the <u>entire heart</u>.

How to make waves

- A wave is a deflection of the ECG line away from the isoelectric line.
- Positive deflection: electrical impulse moving towards the electrode (and vice versa).
- A <u>depolarization</u> moving towards the electrode → <u>positive deflection</u>.
- A <u>repolarization</u> moving towards the electrode → <u>negative deflection</u>.
- The deflection on an ECG is a sum of all electrical activity occurring in the heart simultaneously.

If the sum of electrical activity is perpendicular to the electrode direction, there will be no deflection on the ECG.

ECG Components

Atrial depolarization, beginning in the SA node. Atria contract - heart in diastole.

Ρ

Ventricular depolarization Ventricles contract - heart in systole.

- Ventricular repolarization Ventricles are relaxed.
 - PR interval corresponds to AV conduction velocity
 - QT interval corresponds to length of ventricular AP.

- The conduction system
 - Anatomy
 - Conduction sequence
 - Properties of nodal cells
- Non-nodal action potential
 - Phases of AP
 - Channels of the
 - Other channe
- Noda stie stential
 - Pha. AP
 - Channels of the AP
 - Autonomic control
- The ECG 🗸
 - Comparison to AP
 - Making waves
 - ECG components

Thanks for listening, it's time for a quiz!

wooclap.com/ELECTRICHEART

