Spinal reflexes

By Herman Mageli

Definition

Organization of motor function

Reflex arc

Monosynaptic reflexes

Polysynaptic reflexes

Regulatory mechanisms

Definition spinal reflex

A reflex is a rapid, involuntary response to a stimulus. Most reflexes are spinal reflexes, with pathways that traverse only in the spinal cord.

Definition

Organization of motor function

Reflex arc

Monosynaptic reflexes

Polysynaptic reflexes

Regulatory mechanisms

Organization of motor function

- Motor units
- Types of motoneurons
- Types of muscle fibers
- Muscle spindles
- Innervation of muscle spindles

Motor units

- Motor units = A single motoneuron and the muscle fibers it innervates
 - > Can vary from a few to thousands of muscle fibers
 - Motorneuron pool = All the motoneurons innervating the same muscle

Types of motoneurons

studya

• 2 types

- 1. Alpha motoneurons 🗲
 - Innervate extrafusal muscle fibers
 - > Action potentials in alpha motoneurons cause action potential in extrafusal muscle fibers \rightarrow contraction
 - Biggest, fastest

2. Gamma motoneurons

- Innervate intrafusal muscles fibers
- Adjust the muscles spindles to muscle length changes.

Coactivation!

Extrafusal muscle fibers

- Constitute the majority of skeletal muscle
- Generate force
- Attached to bones through tendons
- Innervated by **alpha motoneurons**

Intrafusal muscle fibers

- Encapsulated in sheaths, forming muscle spindles - run parallell to extrafusal fibers
- **Too small** to create significant force

	Nuclear bag fibers	Nuclear chain fibers
Sensory innervation	la nerve fiber	 la nerve fiber Il nerve fiber
Motor innervation	Dynamic gamma motoneurons	Static gamma motoneurons
Numbers	Less plentiful (2 per spindle)	• More plentiful (5-6 per spindle)
Placement of nuclei	 In «bag region» 	In rows «chains»
Size	Larger	Smaller, but longer

Muscle spindles

- Intrafusal muscle fibers enclosed in connective tissue sac
 Sensory organ
 - Detect velocity and length of muscle movement !
- Especially abundant in muscles used for fine movements (eye)
- They are stretch receptors = proprioceptor!

Coactivation!

Muscle spindle innervation

Sensory innervation

- Consist of **la afferent nerve**.
 - Innervate central region of both nuclear chain and bag fibers
 - > Detect **velocity** of length change
- Group II aff. Nerves
 - Primarly innervate nuclear chain fibers
 - Detect length of muscle fibers

Motor innervation

- Consist of two types of gamma motoneurons
 - 1. Dynamic
 - Synapse on nuclear bag fibers
 - 2. Static
 - Synapse on nuclear chain fibers

- **Organization of motor function**
- Reflex arc
- Monosynaptic reflexes
- Polysynaptic reflexes
- **Regulatory mechanisms**
- Example reflexes

Reflex Arc

- 1. Receptor
- 2. Sensory neuron (afferent pathway)
- 3. Integration center (interneurons)
- 4. Motor neuron (efferent pathway)
- 5. Effector (muscle)

Sensory Receptors Sensation SENSORY Relayed to NEURON the Brain Dorsal Root Congline RELAY NEURON Nerve Signals Ventral Root MOTOR NEURON White Grav Matter Matter Effector Organ Spinal Cord RESPONS

REFLEX ARC

Definition

Organization of motor function

Reflex arc

Monosynaptic reflexes

Polysynaptic reflexes

Regulatory mechanisms

Monosynaptic reflexes

- **Directly** synapse between aff. And eff. Neurons
- Faster than polysynaptic

Polysynaptic reflexes

- One or more interneurons between aff. And eff. → indirect communication
- Aff. neuron send signal to interneuron in grey matter
- Interneurons direct signals
- Allow communication between sensory, motor neurons and CNS

study

Definition

Organization of motor function

Reflex arc

Monosynaptic reflexes

Polysynaptic reflexes

Regulatory mechanisms

Regulatory mechanism

Recurrent inhibition

- Renshaw cell
- To modulate primary motor neuron
 - Prevent overly exaggerated motor response
 Descending influences

Reciprocal inhibition

- Aff. Sens. Neurons synapse on inhibitory interneurons
 - Produce and release GABA
 - Synapse on alpha motoneurons of antagonizing M. → relaxation
 - Allow normal muscle movement.

Tetanus

- Caused by bacteria Clostridium tetani, found among elsewhere in soil.
- Block release of GABA and glycine
- Hyperactive motoneurons
- Constant vigorous contraction

Definition

Organization of motor function

Reflex arc

Monosynaptic reflexes

Polysynaptic reflexes

Regulatory mechanisms

Examples of spinal reflexes

- 1. Stretch reflex
- 2. Golgi tendon reflex
- 3. Flexor-withdrawal reflex (touching a hot stove)

Stretch/myotatic reflex (knee jerk/patellar reflex)

- Simplest of all spinal cord reflexes
 - Only one synapse between aff. And eff. Neurons
- Reflex hammer stretch muscle → detected by muscle spindles → Ia aff. send signal → alpha motoneurons activated → contraction

Golgi tendon reflex/inverse myotatic reflex

- A disynaptic spinal reflex
- Golgi tendon organ proprioceptor found in tendons.
 - Sense tension at the tendon
- Activate Ib aff. Fibers → synapse on inhibitory interneurons → inhibit alpha motoneurons

Flexor-withdrawal reflex

- The most complex of spinal cord reflexes
- Multiple synapses **polysynaptic** reflex
- Nociceptor
- Sensory and pain aff. Fibers initiate a flexion reflex → withdrawal
 - > Ipsilateral observation: flexion \rightarrow withdrawal
 - Contralateral observation: extension
 - Sensory aff.nerve fibers = II, III, IV → synapse on multiple interneurons

Classification of Nerve Fibers

Classification	Type of Nerve Fiber	Example	Relative Diameter	Relative Conduction Velocity	Myelination
Sensory and Motor	A alpha (Aα)	α Motoneurons	Largest	Fastest	Yes
	A beta (Aβ)	Touch, pressure	Medium	Medium	Yes
	A gamma (Αγ)	γ Motoneurons to muscle spindles (intrafusal fibers)	Medium	Medium	Yes
	A delta (Αδ)	Touch, pressure, temperature, fast pain	Small	Medium	Yes
	В	Preganglionic autonomic nerves	Small	Medium	Yes
	С	Slow pain; postganglionic autonomic nerves; olfaction	Smallest	Slowest	No
Sensory Only	Ia	Muscle spindle afferents	Largest	Fastest	Yes
	Ib	Golgi tendon organ afferents	Largest	Fastest	Yes
	Ш	Secondary afferents of muscle spindles; touch, pressure	Medium	Medium	Yes
	Ш	Touch, pressure, fast pain, temperature	Small	Medium	Yes
	IV	Pain, temperature; olfaction	Smallest	Slowest	No

Summary of reflexes

	Stretch reflex (myotatic)	Golgi tendon reflex (Inverse myotatic reflex)	Flexor withdrawal reflex
Stimulus	Muscle stretch	Great contraction/tension	Pain
Receptor	Muscle spindle	Golgi tendon organ	Nociceptors
Integration center	Monosynaptic	Disynaptic	Polysynaptic
Afferent pathway	Group la fibers (also II)	Group Ib fibers	Group II, III, IV fibers
Efferent pathway	a-motoneurons (remember coactivation gamma motoneurons)	a-motoneurons	a-motoneurons
Effect	Contract stretched M. Relax antagonistic M.	Relax contracted M. Contract antagonistic M.	Flexion ipsilateral side Extension contralateral

Definition

Organization of motor function

Reflex arc

Monosynaptic reflexes

Polysynaptic reflexes

Regulatory mechanisms

Good luck!

