Respiratory control

By Alexandra K Vedeler

MD 5/6

Let's get control of that breathing

Involuntary breathing

- Active inspiration and passive expiration
- The respiratory control center
- Central chemoreceptors
- Peripheral chemoreceptors

Voluntary breathing

• Active inspiration and expiration

• Exercise

- Ventilation and perfusion
- Changes due to exercise

Lungs: *breathing normally* Brain: *thinks about breathing* Lungs:

Involuntary breathing = unconscious breathing

studyaid

Pons: pneumotaxic center

- Smooth transition from inspiration \rightarrow expiration
- Inhibits:
 - Apneustic center
 - Inspiratory center (DRG)

Pons: apneustic center

Medulla: Inspiratory center

- Location: Dorsal respiratory group
- Active during inspiration
- Sensory input
- Motor output via intercostal and phrenic nerves

Active inspiration

studuo

- Inhibited by:
 - The Hering-Breuer reflex
 - The pneumotaxic center

Medulla: Expiratory center

- Location: Ventral respiratory group
- Active during forceful expiration, like exercise motor output
- Inactive during normal, quiet breathing
- Inhibits:
 - The apneustic center

Let's review

Brain stem center	Inspiration	Expiration	Main action	
Apneustic center	Х		Trigger inspiration	
Pneumotaxic center		X passive	Control of respiratory rate and pattern	
Dorsal respiratory group	Х		Receive sensory input Send inspiratory signals to the intercostal muscles and diaphragm	
Ventral respiratory group		X active	Active expiration Active during exercise	
			studyai	9

medulla

studyaid 🔀

Overview of other receptors

	Lung stretch receptors	Muscle-joint receptors	Irritant receptors	Juxtacapillary receptors
Туре	Mechanoreceptor	Mechanoreceptor	Rapidly adapting receptors	Sensory nerve endings
Location	Airway smooth muscle	Joints and muscles	Between airway epithelial cells	Alveolar walls
Stimulation	Distension of the lungs	Movement of limbs during exercise	Noxious chemicals and particles	↑ blood volume ↑ interstitial fluid volume
Effect on respiratory rate	\downarrow	1	\uparrow	↑
Reflexes	Hering-Breuer reflex*		Coughing reflex	
				study

Let' take a deep breath

Voluntary breathing = breathing under conscious control

Clinical correlation

Mr. Stress is been under a lot of pressure at work lately. One late evening, 1 hour before the deadline of handing in the annual work report he starts sweating, his heart is racing and his breathing rate increases.

He is hyperventilating and he starts to feel dizzy. His co-worker, Ms. Namaste, hands him a paper bag and tells him to breathe into it.

He slowly starts to feel better.

Why does the paper bag help Mr. Stress?

You' re at the gym

Increased cardiac output

Increased CO₂ production

Increased respiratory rate

What is happening to your respiratory system?

Increased ventilation

Increased O₂ consumption

Ventilation and perfusion Definition

Ventilation (V) The movement of air between the atmosphere and the lungs

Perfusion (Q) The delivery of blood to the alveoli

Diffusion

• Gas exchange

Ventilation/perfusion mismatch

\uparrow ventilation + \uparrow perfusion = \uparrow gas exchange

Gas exchange at tissue site

A little summary

- \uparrow O₂ consumption
- ↑ CO_2 production → ↑ venous PCO_2
- \uparrow Ventilation
- ↑ Cardiac output \rightarrow ↑ perfusion
 - Gas exchange
- ↓ Physiologic dead space ↓ Affinity of hemoglobin to O_2

The Bohr effect

Oxygen Saturation of Hemoglobin (%)

Best of luck!

