Cardiac muscle contraction

Table of Contents

- Cardiac contraction physiology and anatomy
 - $_{\odot}$ The sarcomere
 - Excitation-contraction coupling
 - \circ Relaxation
 - o Pharmacology
- Cardiac contraction measurements
 - \circ Cardiac output (CO)
 - o Stroke volume (SV)
 - Contractility/inotropism
 - > Ejection fraction
 - \circ Preload
 - Frank-Starling Curve
 - \circ Afterload

The Cardiac Muscle Unit

studyaid

The Cardiac Muscle Cell

The Cardiac Muscle Cell

The movement of the signal:

Presynaptic membrane Sarcolemma T-tubule Terminal Cisternae Sarcoplasmic Reticulum (SR) Sarcomere

The Sarcomere

The essential contractile unit

Excitation-Contraction Coupling

• Signal transmission into cell

- Action potential opens L-type Ca²⁺-channel (dihydropyridine receptor/DHPR) in t-tubules
- \rightarrow «trigger Ca²⁺» released into cell
- Signal amplification
 - Ca²⁺ stimulates ryanodine receptors (RyR) on SR
 - \rightarrow Calcium-induced calcium release (CICR)
- Contraction
 - Ca²⁺ from SR and DHPR/L-type Ca²⁺-channel diffuse to the sarcomere
 - Ca²⁺ binds to troponin, which removes tropomyosin from the myosin binding sites

Contraction

http://www.sci.sdsu.edu/movies/actin_myosin_gif.html

Relaxation

- Calcium disengagement
 - Ca²⁺ releases from troponin, and tropomyosin returns to the default state of blocking the myosin binding site
 - Passive lengthening
- Calcium removal
 - Ca²⁺-ATPase (SERCA) pumps Ca²⁺ into the SR
 - Ca²⁺-3Na⁺-exchanger (NCX) pumps Ca²⁺ out of cell
 - Na⁺/K⁺-ATPase restores Na⁺ gradient of sarcolemma
- Regulation
 - Unphosphorylated (inactive) phospholamban inhibits SERCA function
 - β_1 adrenergic stimulation phosphorylates (activates) phospholamban \rightarrow increased rate of relaxation

Recap...

Contraction					
Stage	Event				
1	Action Potential – An action potential is initiated and the wave of depolarization is conducted to interior of the cell membrane through t-tubules				
2	Trigger Ca²⁺ - During the plateau phase of the ventricular action potential, Ca ²⁺ enters the cardiomyocyte through L-type Ca ²⁺ channels (<i>dihydropyridine receptors</i>)				
3	Ca²⁺ induced Ca²⁺ release (CICR) - Trigger Ca ²⁺ activates ryanodine receptors on the SR and Ca ²⁺ is subsequently released from the SR				
4	Cross-bridge formation - Ca ²⁺ binds Troponin C, leading to removal of the tropomyosin inhibition on myosin. Actin binds myosin, allowing cross-bridge formation and contraction				

Relaxation			
Stage	Event	Contraction	Relaxation
5	Ca ²⁺ detaches from troponin C	₩ <u></u>	⑦ ^{Ca2+} № ^{Na+} ^(B)
6	Ca ²⁺ reuptake into SR by Ca ²⁺ - ATP- ase – Intracellular Ca ²⁺ levels decrease	ICF Ca2+	АТР
7	Ca²⁺ - 3Na⁺ exchanger in sarcolemmal membrane - Extrudes Ca ²⁺ out of the cell, contributing to a further decrease in intracellular Ca ²⁺	Ryanodine receptors- Ca2+ Ca2+ Ca2+ Ca2+ Sarcoplasmic reticulum	Ca2+ storage
8	Na⁺/K⁺ ATP-ase – Restoration of the Na⁺ gradient	Ca2+	
		Contraction	Ca2+ 5

Drugs that Affect Inotropy

Drug class	Glycosides	Cathecholamines	Calcium Channel Blockers
Drug examples	DigoxinDigitoxin	EpinephrineNorepinephrine	«dipine»-suffix: • Amlodipine • Nifedipine
Mechanism of action	Inhibits Na+/K+- ATPase → ↑ intracellular Ca²+	β_1 – adrenergic receptor agonist \rightarrow phospholamban phosphorylation	Blocks Ca ²⁺ -channels in cardiac muscle & arteriolar smooth muscle
Effects	 Positive inotrope 	Positive inotrope↑ Heart rate	Negative inotropeVasodilation

Cardiac Contraction Measurements

Cardiac Output

- Cardiac output = the amount of blood ejected per minute (L/min)
- Determined by stroke volume (SV = L/beat) & heart rate (HR = beats/min)
- Normal range: 4 8 L/min

$CO = SV \times HR$

 $\frac{L}{\min} = \frac{L}{beat} \times \frac{beat}{\min}$

Clinical correlate:

In situations where there is a decrease in blood flow throughout the body (bleeding from trauma, severe infections, allergic reactions), your body will attempt to compensate for the loss in cardiac output by increasing your heart rate.

Takeaway: Patients with a fast heart rate may be in need of urgent intervention!

Stroke Volume

- Stroke volume (SV) = amount of blood ejected per beat
- Normal range: 60-100 mL

SV = EDV - ESV EDV = end-diastolic volume ESV = end-systolic volume

Stroke volume is dependent on contractility, preload and afterload:

- \uparrow Contractility $\rightarrow \uparrow$ SV
- \uparrow Preload $\rightarrow \uparrow$ SV
- \uparrow Afterload $\rightarrow \downarrow$ SV

Contractility - inotropism

- Contractility = strength of contraction of the cardiomyocytes
- Proportional to intracellular Ca²⁺ concentration
- Measured by ejection fraction (EF), or percentage of blood ejected per beat
- Normal range: 50 70%

$$EF = \frac{SV}{EDV}$$

OT 7

SV (stroke volume) = blood volume ejected per beat
EDV (end-diastolic volume) = blood volume present before each beat

Contractility - inotropism

Increased contractility

- Sympathetic stimulation
- Increased heart rate
 - $\circ \quad \uparrow HR \quad \rightarrow \quad \uparrow Ca^{2+} \text{ in } SR$

Decreased contractility

- Parasympathetic stimulation
- Decreased heart rate

Time Green dotted line: ↑ contractility Purple line: ↓ contractility

stuc

 $\frac{\text{Preload}}{\uparrow \text{Preload}} \rightarrow \uparrow \text{SV}$

- Degree of sarcomere stretch before ventricular contraction
- Preload = LVEDP (\approx EDV)

LVEDP = Left Ventricular End-Diastolic Pressure (mmHg) EDV = End Diastolic Volume (L)

- Dependent on venous tone and blood volume:
 - \circ \uparrow Venous tone \rightarrow \uparrow VR \rightarrow \uparrow Preload
 - \circ \uparrow Blood volume \rightarrow \uparrow VR \rightarrow \uparrow Preload

The Length-Tension Relationship of Muscle

Frank-Starling curve

Describes how changes in preload affects stroke volume:

• \uparrow Preload \rightarrow \uparrow Sarcomere stretch \rightarrow \uparrow SV

 Heterometric autoregulation:
 The heart responds to increased preload by increasing stroke volume

• Excessive stretch decreases SV

Frank-Starling curve

In relation to contractility

Increased contractility – curve to the *left*

- Sympathetic stimulation
- Increased heart rate

Decreased contractility – curve to the *right*

- B-blockers
- Heart failure

Afterload

 $\uparrow \text{ Afterload } \rightarrow \downarrow \text{SV}$

- The pressure the *ventricles are pushing against* during systole:
 - $_{\circ}$ The pressure in the aorta
 - $_{\circ}$ Hypertension \rightarrow \uparrow afterload
- Dependent on *total peripheral resistance* (TPR), which is regulated by constriction of the arterioles:

 $_{\circ}$ Arteriolar constriction \rightarrow \uparrow TPR \rightarrow \uparrow afterload

Preload vs. Afterload

- \uparrow Afterload $\rightarrow \qquad \downarrow$ Stroke volume
- \downarrow Afterload \rightarrow \uparrow Stroke volume
- \uparrow Preload \rightarrow \uparrow Stroke volume
- \downarrow Preload $\rightarrow \qquad \downarrow$ Stroke volume

To which point (from N) will you end up:

- During exercise?
- In aortic valve stenosis?
- During exams (stress)?
- During exams (stress)?
 When you lay on your back with legs raised? O
- When arterioles constrict?
- In a trauma patient with blood loss?

study