Adrenal disorders

Simen Hagtvedt 5th grade MD

Adrenal disorders

- Adrenal hypercorticolism/Cushing
- Adrenocortical insufficiency
- Hyperaldosteronism
- Pheochromocytoma

Adrenal hypercorticolism/Cushing

Pituitary adrenal axis

- Controls the secretion of cortisol
- Hypothalamus secretes $CRH \rightarrow ant$. pituitary gland $\rightarrow ACTH$

- Controls the secretion of cortisol
- Hypothalamus secretes $CRH \rightarrow$ ant. pituitary gland \rightarrow ACTH \rightarrow adrenal gland \rightarrow cortisol
- Cortisol causes a neg. feedback loop

Major effect of excess cortisol	How?
Immunosuppresion	\downarrow T cells and B cells in plasma, \downarrow histamine, \downarrow eosinophils and blocks neutrophils
Hyperglycemia	\uparrow Liver production of glucose, cells become more resistant to insulin \rightarrow \uparrow risk of DM
Hypertension	Important in maintaining normal blood pressure
Fat deposition	Destruction of fat cells $\rightarrow \uparrow$ total cholesterol and triglycerides + stimulates fat deposition in face, around trunk and upper back
Muscle, bone and skin changes	Muscle atrophy \rightarrow thin arms and legs Skin stretches \rightarrow rapid fat deposition + thin skin Bad for bones \rightarrow inhibits osteoblasts \rightarrow hypercalemia
Reproductive effect	↓ LH and FSH Woman = irregular menses or absence of menstruation Men = low testosterone and low sperm count

Causes of Adrenal hypercorticolism/Cushing

- Exogenous glucocorticoids <u>most common cause</u>
 - Adrenal gland working fine we just give the patient to much oral steroids
 - Used for its immunosuppressive effect
- Overproduction of ATCH by pituitary gland (Cushings disease)
 - **Cushing** <u>syndrome</u> = excess cortisol from outside or inside the body.
 - Cushings <u>disease</u> = pituitary tumor causes the body to make too much cortisol.
- Overproduction of ACTH by ectopic tumor
 - Small cell lung cancer (most common)
- Overproduction of cortisol by adrenal adenoma

1st - check for elevation of cortisol

- 24 hour urinary cortisol excretion test
- Late-night serum cortisol
 - Cortisol goes up and down during the day
- Low dose dexamethasone suppression test
 - Dexamethasone = «synthetic cortisol»
 - Give a <u>low</u> dose of dexamethasone (1mg) at bed time
 - Person <u>without</u> Cushings = low cortisol in the morning
 - Person <u>with Cushings</u> = high cortisol in the morning

2nd

- Measure plasma ACTH to find out if it`s:
 - ACTH independent = low plasma ACTH → seen in adrenal adenoma
 - ACTH dependent = normal/high plasma ACTH → seen in Cushings disease and ectopic adenoma

2nd

- Measure plasma ACTH to find out if it`s:
 - ACTH independent = low plasma ACTH → seen in adrenal adenoma
 - ACTH dependent = normal/high plasma ACTH → seen in Cushings disease and ectopic adenoma

3rd

- High dose dexamethasone test
 - Give a <u>high</u> dose of dexamethasone (8mg) at bed time

ACTH

- Low cortisol = pituitary adenoma
- High cortisol = ectopic

Adrenocortical insufficiency

Adrenal insufficiency

- Loss of one or more adrenal hormones lacksquare
- All forms of adrenal insufficiency \rightarrow loss of ٠ production of glucocorticoids (cortisol) some forms also involves loss of mineralcorticoids (aldosterone) and some androgen (DHEA)
- Can be seperated into: ٠
 - Primary •
 - SecondaryTertiary
- Central adrenal insufficiency

Glucocorticoid deficiency	How?
Hypotension	Cortisol maintains blood pressure \rightarrow therefore \downarrow cortisol = hypotension
Hypoglycemia	Cortisol normally provide glucose to the body \rightarrow therefore \downarrow cortisol = hypoglycemia
N/V + abdominal pain	
Adrenal crisis	Acute onset of life-threatening shock due to the lack of cortisol.

Aldosterone and androgen deficiency

- Mineralcorticoid (aldosterone) deficiency
 - Aldosterone normally:
 - **increase** Na⁺
 - <u>decrease</u> K⁺ and H⁺
 - ↓aldosterone = hyperkalemia and metabolic acidosis (because of ↑ H⁺)
 - Salt craving due to the loss of Na
 - Increased free water due to increased ADH release
- Androgen deficiency
 - Males usually no significant impact alot of androgens produced by testes
 - Females decreased axillary, pubic hairs + loss of sexual interest

Primary adrenal insufficency (Addisons disease)

- Destruction of the entire adrenal gland \rightarrow loss of <u>all</u> adrenal hormones
- Can be referred to as Addisons disease
- Symptoms
 - Salt craving
 - Hyponatremia
 - Hyperkalemia
 - <u>Hyperpigmentation</u> → ↑ACTH causes an ↑MSH, because they share the same precursor (POMC) → patient will present with a sun tan (John F. Kennedy)

Secondary or tertiary adrenal insufficency

- Secondary:
 - Loss of ACTH from the pituitary gland
- Tertiary:
 - Loss of CRH from the hypothalamus
- Both of these conditions = loss of cortisol (glucocorticoid) and sometimes androgens
- Can be due to ACTH deficiency due to patient taking chronic glucocorticosteroid therapy
- Symptoms:
 - Hypotension \rightarrow vasodilation (less prominent)
 - <u>NO</u> hyperpigmentation due to <u>low</u> ACTH

What is the cause of primary adrenal insufficency?

- Autoimmune adrenalitis
 - Most common \rightarrow J.F.K
 - Autoimmune destruction of adrenal gland by antiadrenal antibodies (antibodies to the <u>21-hydroxylase enzyme</u>)
- Infectious adrenalitis
- Hemorrhagic infarction
 - Bleeding into the adrenal gland → underperfusion and death of adrenal gland
 - Usually caused by sepsis (called "<u>Waterhouse-Friedrischen</u> syndrome")
- Metastatic cancer
 - Rare because over 90% of both adrenal glands must be destroyed

Diagnosis

Hyperaldosteronism

Hyperaldosteronism

- <u>Excess</u> secretion of <u>aldosterone</u> from the adrenal gland
- Primary hyperaldosteronism
 - Can be caused by:
 - Adrenal adenoma (also called <u>Conn's syndrome</u>) = small portion of the gland overproduce aldosterone
 - Bilateral idiopathic adrenal hyperplasia = the glands enlarge and produce to much aldosterone
 - Adrenal carcinoma rare
- Secondary hyperaldosteronism
 - Can be caused by:
 - Renal artery stenosis → Renin-Angiotensin-Aldosterone System

Clinical features

- Primary and secondary hyperaldosteronism = same symptoms but different markers
- Aldosterone = functions at the collecting duct of the nephrones
 - Na increase \rightarrow H2O loves Na and follows along with it \rightarrow hypertension
 - Resistant to hypertension medication
 - K <u>decrease</u> \rightarrow hypokalemia
 - H decrease → metabolic alkalosis
- Aldosterone escape phenomenon
 - Normal volume on physical exam
 - No swelling, no pulmonary rails. no increased JVP = only HTN
 - Caused by heart releasing → ANP causing water and Na excretion
 combats aldosterone
 - Not seen in secondary hyperaldosteronism

Diagnosis

- Typical patient = patient with hypertension that is not responding to any medication and with hypokalemia
- Two blood tests:
 - Plasma <u>renin</u> activity (PRA)
 - Plasma <u>aldosterone</u> concentration (PAC)
 - Take the ratio of these two
 - If high = primary hyperaldosteronism
 - If low = secondary hyperladosteronism

Pheochromocytoma

Pheochromocytoma

- Tumor in the adrenal medulla, causing an excess of cathecolamine
- **Cathecolamine** = epinephrine, norepinephrine, dopamine
- Stimulates the sympathetic nervous system
- Tumor secreting epinehrine = episodic hypertension
- Tumor secerting norepinephrine = less often hypertension, more often hyperglycemia and glycosuria
- Called the «10% tumor»
 - 10% malignant
 - 10% occur in children
 - 10% occurs outside of the abdomen
 - 10% are bilateral

Clinical features

- Norepinephrine and epinephrine activates adrenergic receptors
- α1 = causes HTN
- **B1** = causes an <u>increase</u> in HR
- **B2** = causes bronchodilation
- +
 †Glucose,
 †fat metabolism
- Symptoms are fluctuating in tumors
- The classic triad: headache, tachycardia and excessive sweating

Dwight D. Eisenhower, 34th president of the United States had an undiagnosed pheochromocytoma

*Metanephrine = breakdown product of cathecolamine

studyaid

Diagnosis

24 hour urine metanephrine* test or free metanephrine in blood

