
# Acute respiratory disorders

Josefine Holum



### Todays cases at the ER

- Deep vein thrombosis
- Pulmonary embolism
- Respiratory failure type 1 and 2
- Acute respiratory distress syndrome











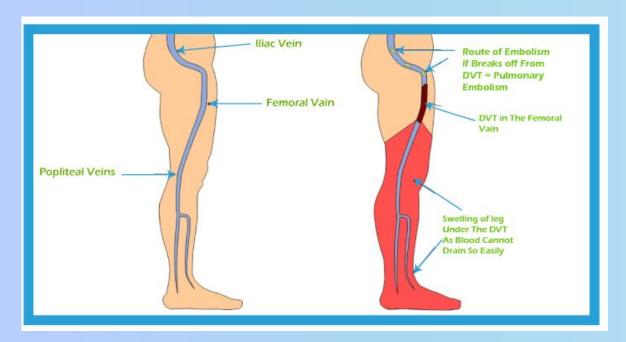
#### Meet Ms Bloom

Ms Bloom is a 36 year old woman who came into the emergency department with a painful, warm and swollen left leg





#### Ms Bloom


Ms Bloom is a 36 year old woman who came into the emergency department with a painful, warm and swollen left leg

- She recently came back from a trip to Japan
- Denies fever, chill or leg trauma
- She is on an oral contraceptive containing estrogen
- Her BMI is 34
- 20 pack years





## Deep vein thrombosis



#### **Thrombus**

A blood clot that <u>remains</u> at the site it is formed. Most common DVT location: deep femoral vein





# Which of the following is NOT a risk factor for a deep vein thrombosis?

- a) Her BMI
- b) Estrogen containing contraceptive pills
- c) Her age
- d) Recent flight history





Hypercoagulability

#### Hereditary

- Factor V Leiden mutation

#### Acquired

- Estrogen therapy
- Pregnancy

- Obesity
- Dehydration

## Virehow triad

Endothelial damage

#### **Stasis**

#### Dysfunction

- Age > 60 years
- Hypertension
  - Smoking

#### **Impairment**

- Surgery
- Trauma

#### **Immobilization**

- Long flights
- Hospitalization
- Varicose veins



#### SHE

Stasis
Hypercoagulability
Endothelial damage

Hypercoagulability

#### Hereditary

- Factor V Leiden mutation

#### Acquired

- Estrogen therapy
- Pregnancy

- Obesity
- Dehydration

## Virehow triad

Endothelial damage

#### **S**tasis

#### Dysfunction

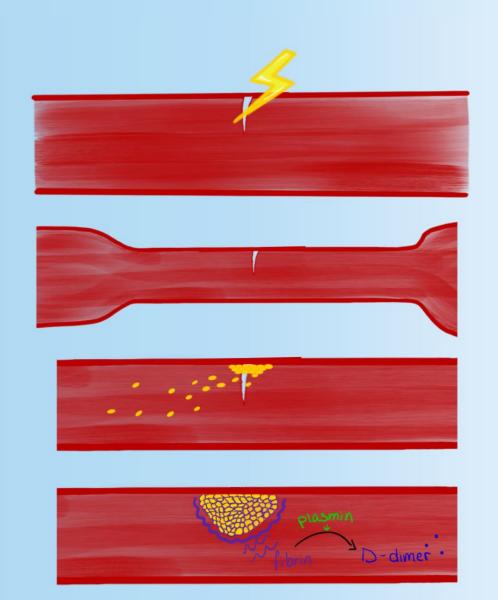
- Age > 60 years
- Hypertension
  - Smoking

#### **Impairment**

- Surgery
- Trauma

#### **Immobilization**

- Long flights
- Hospitalization
- Varicose veins




## Deep vein thrombosis Pathophysiology

1. Damage to the endothelium

2. Vasoconstriction

- 3. Primary hemostasis
  Formation of a weak platelet plug
- **4. Secondary hemostasis**Strong fibrin clot





## You take a blood test from Ms Bloom. What would strengthen your suspicion of a DVT?

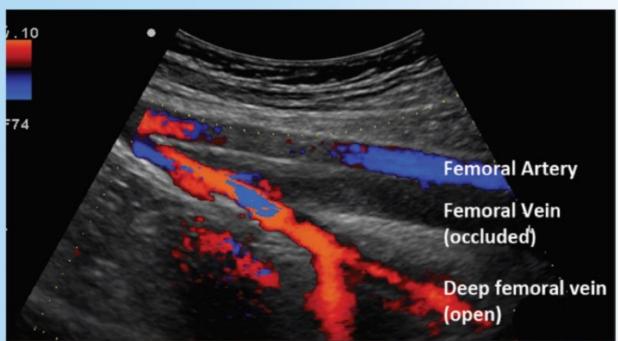
- a. Elevated troponin
- b. Elevated D-dimer
- c. Elevated lactate
- d. Elevated creatinine





|                                               | Test result | Reference range |
|-----------------------------------------------|-------------|-----------------|
| Prothrombin time (INR)                        | 1.09        | 0.83-1.11       |
| Activated partial thromboplastin time (ratio) | 1.10        | 0.85-1.17       |
| Fibrinogen (mg/dL)                            | 374         | 150-400         |
| D-dimer (ng/mL)                               | 2557        | <500            |
| Hemoglobin (g/dL)                             | 12.0        | 12.0-16.0       |
| Hematocrit                                    | 0.35        | 0.35-0.45       |
| Red blood cell count (x12/L)                  | 4.27        | 3.80-5.10       |
| White blood cell count (x12/L)                | 9.88        | 4.30-10.0       |
| Platelets (x12/L)                             | 395         | 150-400         |
| Alanine aminotransferase (IU/L)               | 28          | 6-40            |
| Lipase (IU/L)                                 | 30          | 13-60           |
| Pancreatic amylase (IU/L)                     | 37          | 28-100          |
| Total bilirubin (mg/dL)                       | 0.40        | 0.20-1.10       |
| Creatinine (mg/dL)                            | 0.64        | 0.50-1.20       |
| Urea nitrogen (mg/dL)                         | 8.6         | 8.0-22.0        |
| Glucose (mg/dL)                               | 106         | 60-110          |
| Albumin (g/L)                                 | 38          | 32-50           |
| Erythrosedimentation Rate                     | 22          | <38             |

Negative (<500 ng/mL)


DVT is ruled out

Possible DVT - more investigations are needed



## Venous ultrasound with doppler





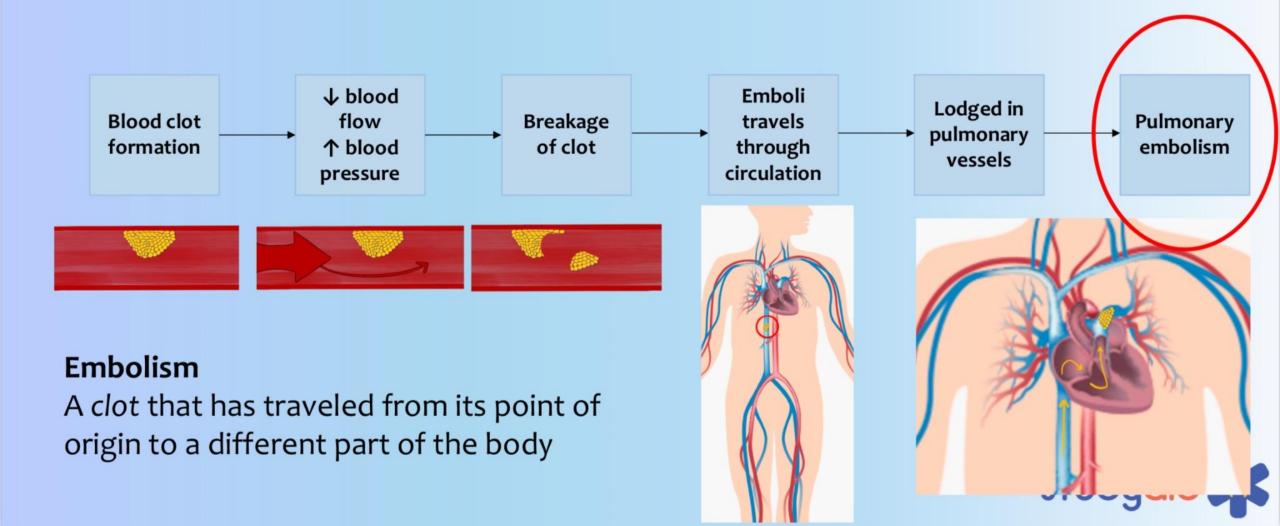
You confirm the diagnosis of a deep vein thrombosis





Suddenly Ms Bloom starts hyperventilating and complains of chest pain worsening on deep inspiration. The nurse takes her vitals:

Respiratory rate: 26 Blood pressure: 130/87 mmHg


Heart rate: 110bpm Saturation (SpO<sub>2</sub>): 94%

What do you now suspect is causing Ms Bloom's symptoms?



## From DVT to pulmonary embolism

> 95% of pulmonary embolisms are caused by a DVT



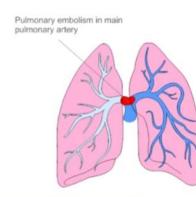
## Types of emboli

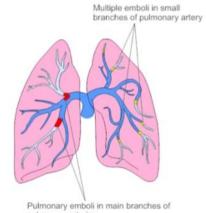


Fat

Air

Thrombus (blood clot)


**Bacteria** 


**A**mniotic fluid

**Tumor** 



## Severity!





| Pulmonary | emboli   | in | main | branches | of |
|-----------|----------|----|------|----------|----|
| pulmonary | arteries |    |      |          |    |

|             | Small                                                         | Medium                                                 | Massive                                                                          |
|-------------|---------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|
| Recognition | Often<br>unrecognized                                         | Sudden                                                 | Sudden                                                                           |
| Symptoms    | Dyspnea on exercise                                           | Pleuritic chest pain<br>Dyspnea<br>Fever<br>Hemoptysis | Shock –<br>hemodynamic<br>collapse<br>Central chest pain<br>Syncope<br>Tachypnea |
| Signs       | Pulmonary<br>hypertension<br>Right ventricular<br>hypertrophy | Tachycardia<br>Pleural friction rub<br>may be present  | Weak pulse<br>Hypotension<br>Death                                               |



### How do you diagnose Ms Bloom

#### Wells criteria for pulmonary embolism

| Wells criteria for PE [9][10]                                            |                  |
|--------------------------------------------------------------------------|------------------|
| Criteria                                                                 | Points           |
| Clinical symptoms of DVT                                                 | 3                |
| PE more likely than other diagnoses                                      | 3                |
| Previous PE/DVT                                                          | 1.5              |
| Tachycardia (Heart rate > 100/min)                                       | 1.5              |
| Surgery or immobilization in the past 4 weeks                            | 1.5              |
| Hemoptysis                                                               | 1                |
| Malignancy (=                                                            | 1                |
| Original Wells score (clinical probability) [9]                          |                  |
| <ul> <li>Total score 0-1: low probability of PE (6%)</li> </ul>          |                  |
| <ul> <li>Total score 2–6: moderate probability of PE (23%)</li> </ul>    | Scara - a        |
| <ul> <li>Total score ≥ 7: high <u>probability</u> of PE (49%)</li> </ul> | <u>Score = 9</u> |
| Modified Wells score (clinical probability) [10]                         |                  |
| Total score < 4: PF unlikely (8%)                                        |                  |
| Total score > 4: PE likely (34%)                                         |                  |


#### Ms Blooms status

- ✓ Diagnosis of DVT
- ✓ Afebrile
- Chest pain on inspiration
- ✓ Vitals:
- RR: 26
- BP: 130/87
- HR: 110
- SPO2: 94%



## **Diagnostics**

- Wells criteria
- D-dimer levels
- Auscultation
- Arterial blood gas
- ECG





## **Diagnostics**

- Wells criteria
- D-dimer levels
- Auscultation
- Arterial blood gas
- ECG
  - ★CT pulmonary angiogram





#### Prevention!

- ✓ Mobilization
- √ Life-style changes
- √ Compression therapy
- ✓ Anticoagulant prophylaxis
  - · Low molecular weight heparin







# A new patient arrives at the ER







#### Meet Mr. Camel

Mr. Camel is a 68 year old man previously diagnosed with grade 3 COPD and a history of 40 pack-years.



He presents to the emergency department with a 4-day history of worsening dyspnea, chest pain, and a productive cough.

On physical examination you find:

| Heart rate | Blood pressure | Resp. rate | SpO <sub>2</sub> | Temperature |
|------------|----------------|------------|------------------|-------------|
| 105        | 110/75 mmHg    | 22         | 87%              | 38.8℃       |

On auscultation you hear bilateral inspiratory crackles and expiratory wheezes.



## We suspect pneumonia

qSOFA:

RR: >22 BP<sub>systolic</sub> < 100 mmHg Altered mental status

On physical examination you find:

| Heart rate | Blood pressure | Resp. rate | SpO <sub>2</sub> | Temperature    |
|------------|----------------|------------|------------------|----------------|
| 105        | 110/75 mmHg    | 22         | 87%              | 38.8° <b>C</b> |

On auscultation you hear bilateral inspiratory crackles and expiratory wheezes.

You take a blood culture that is positive for Streptococcus Pneumoniae Confirming a bacterial pneumonia



## You decide to perform an arterial blood gas:

pH: 7.19 (7.35-7.45)

PaO<sub>2</sub>: 45 mmHg (>80 mmHg)

PaCO<sub>2</sub>: 55 mmHg (35-45 mmHg)

 $HCO_3^-$ : 29 mEq/L (21-27 mEq/L)





# Respiratory failure is a <u>syndrome of inadequate gas exchange</u> due to dysfunction of one or more essential components of the respiratory system

Respiratory Failure Type I
Hypoxemic respiratory failure

Respiratory Failure Type II

Hypercapnic respiratory failure

| Definition      | PaO <sub>2</sub> < 60 mmHg  PaO <sub>2</sub> < 60 mmHg $PaO_2 < 60 \text{ mmHg}$ $PaO_2 < 60 \text{ mmHg}$ $PaO_3 < 60 \text{ mmHg}$ $PaO_4 < 60 \text{ mmHg}$ $PaO_5 < 60 \text{ mmHg}$ $PaO_7 < 60 \text{ mmHg}$ $PaO_7 < 60 \text{ mmHg}$ $PaO_7 < 60 \text{ mmHg}$ |                                                                                            |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Pathophysiology | Oxygen failure                                                                                                                                                                                                                                                         | Ventilation failure<br>Increased dead space<br>Increased CO₂ production<br>Hypoventilation |

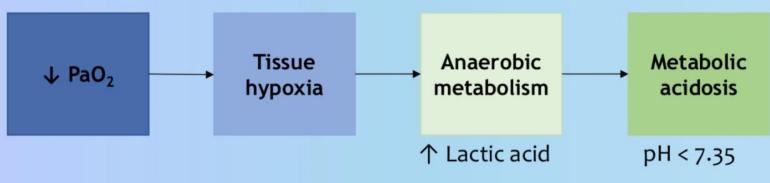


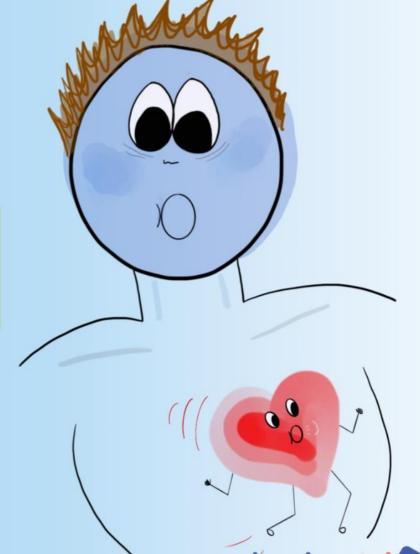
The ER is busy today and the attending asks you to run a blood gas on a new patient is having difficulties breathing:

The ABG shows:

pH: 7.33 (7.35-7.45)

 $PaO_2$ : 45 mmHg (>80 mmHg)


Pa $\overline{CO_2}$ : 42 mmHg (35-45 mmHg)


 $HCO_3^{\frac{1}{2}}$ : 23 mEq/L (21-27 mEq/L)

Lactic acid: 3.2 mmol/L (0.5-1.0 mmol/L)



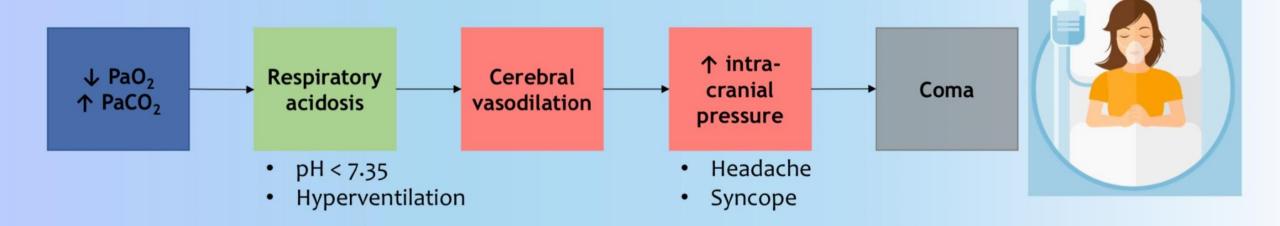
## Clinical presentation Respiratory failure type I





The ABG shows:

pH: 7.33


PaO<sub>2</sub>: 45 mmHg

PaCO<sub>2</sub>: 42 mmHg

 $HCO_3^-$ : 23 mEq/L

Lactic acid: 3.2 mmol/L

## Clinical presentation Respiratory failure type II



Mr. Camel's ABG:

pH: 7.19 (7.35-7.45) PaO<sub>2</sub>: 45 mmHg (>80 mmHg) PaCO<sub>2</sub>: 55 mmHg (35-45 mmHg) HCO<sub>3</sub><sup>-</sup>: 29 mEq/L (21-27 mEq/L)



## The nurse comes running!



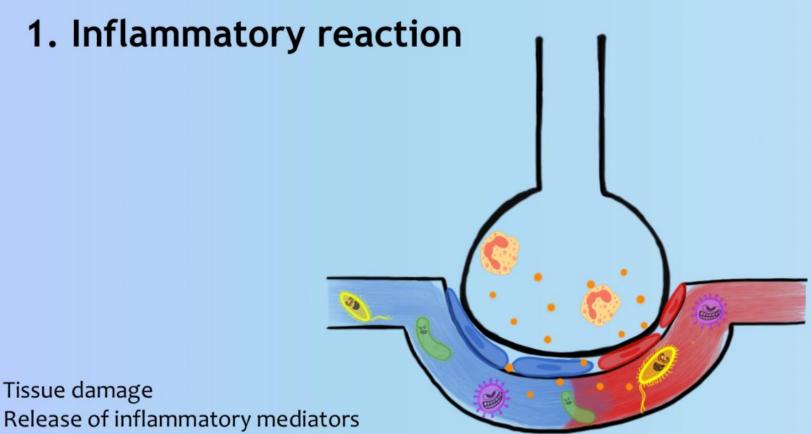
Mr. Camel's condition is deteriorating, his vitals now show:

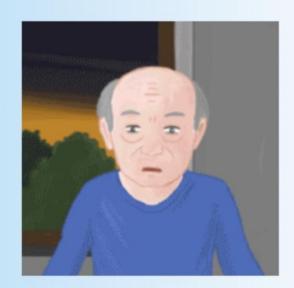
| Heart rate | Blood pressure | Resp. rate | SpO <sub>2</sub> | Temperature    |
|------------|----------------|------------|------------------|----------------|
| 115        | 98/64 mmHg     | 26         | 84%              | 39.0° <b>C</b> |

You notice that his mouth is turning slightly blue and he is becoming more drowsy.



# He is presenting with all the clinical features of Acute Respiratory Distress Syndrome


- ✓ Redisposing condition: Pneumonia → sepsis
- ✓ Dyspnea (shallow breathing)
- ✓ Tachypnea (Respiratory rate: 26)
- √ Tachycardia (Heart rate: 115 bpm)
- ✓ Cyanosis (blue discoloration around his mouth)


| Heart rate | Blood pressure | Resp. rate | SpO <sub>2</sub> | Temperature |
|------------|----------------|------------|------------------|-------------|
| 115        | 98/64 mmHg     | 26         | 84%              | 39.0℃       |

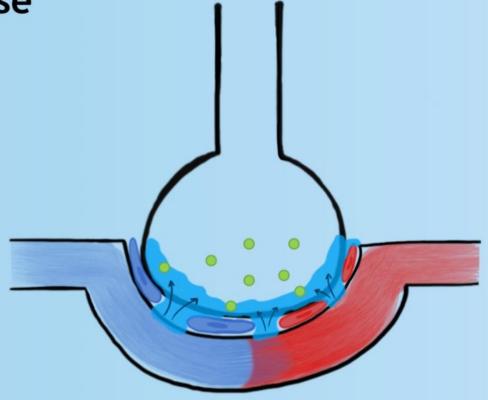


## Acute respiratory distress syndrome

**Pathophysiology** 





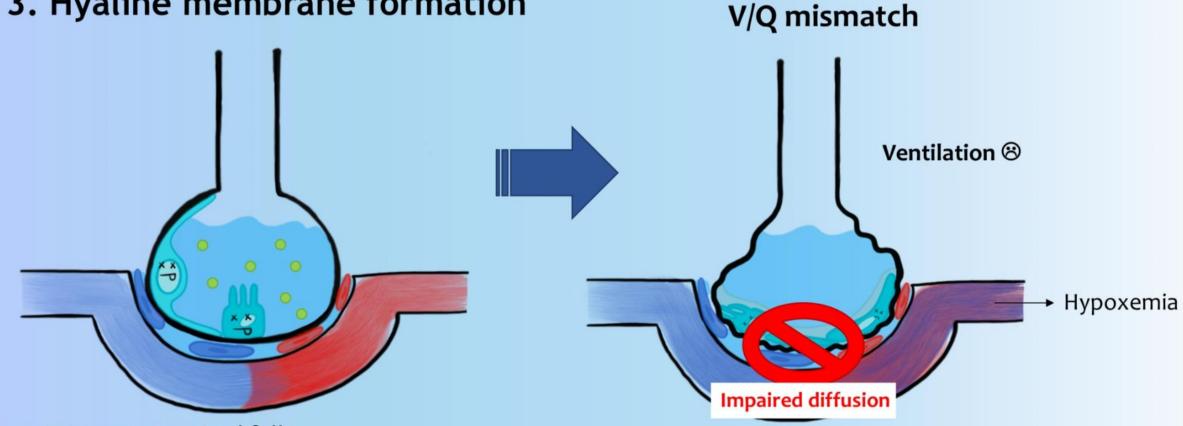

3. Neutrophil migration

4. Cytokine release → diffuse alveolar damage



## Acute respiratory distress syndrome Pathophysiology

2. Exudative phase

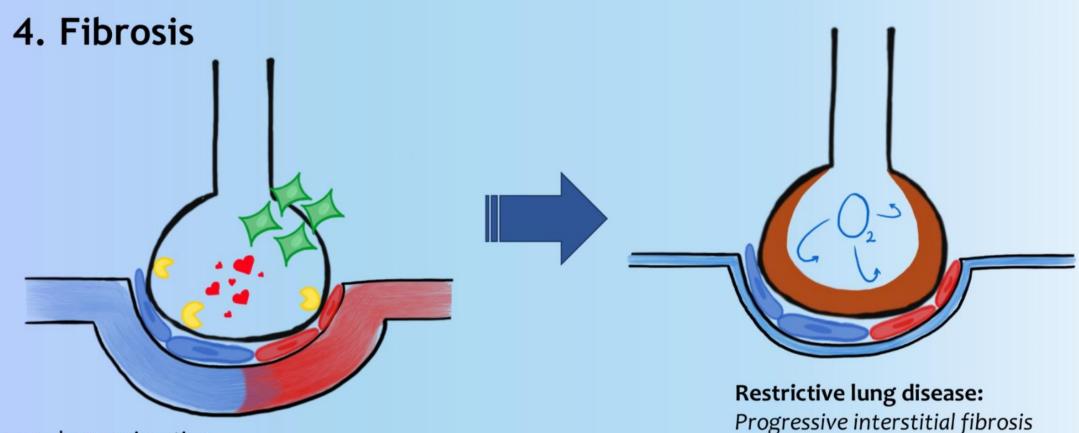



- 1. Increased vascular permeability: Fluid leakage into the alveoli
- 2. Protein-rich edema fluid
- 3. Decreased lung compliance and respiratory distress



### Acute respiratory distress syndrome **Pathophysiology**

3. Hyaline membrane formation




Perfusion ©

- Damage to pneumocytes I & II
- Decreased surfactant
- Alveolar collapse

## Hyaline membrane formation

Pathophysiology - complication



- 1. Macrophage migration
- 2. Fibroblast proliferation
- 3. Collagen deposition



Acute respiratory distress syndrome

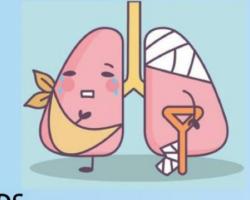
**Etiology** 

#### **SPARTAS**

Sepsis\*

Pneumonia

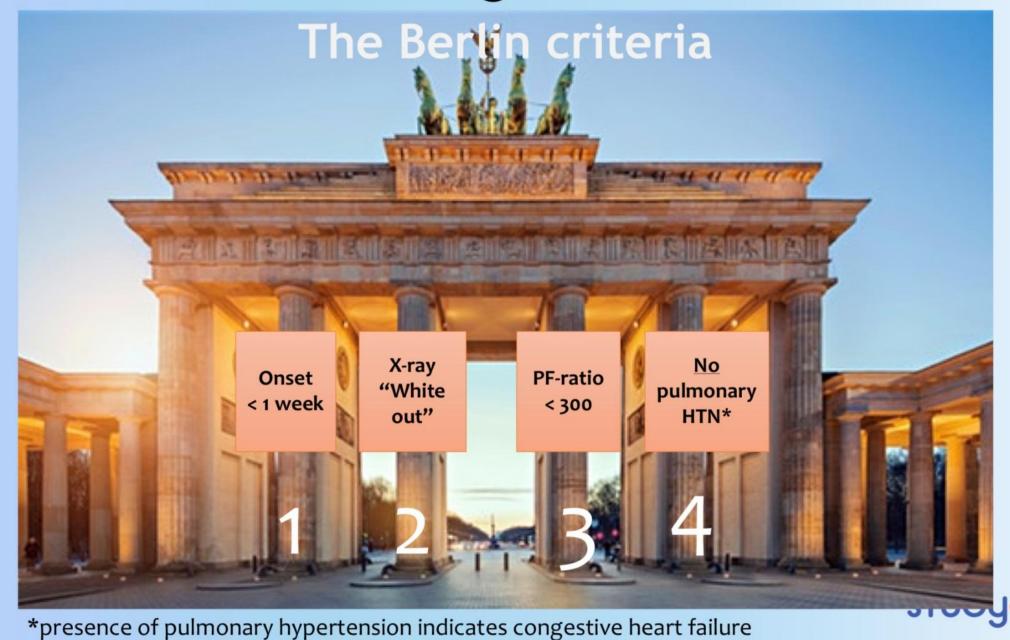
**A**spiration


uRemia

**Trauma** 

Acute pancreatitis

Shock








\*Sepsis is the most common cause of ARDS

## How do we diagnose Mr Camel?



## How do we diagnose Mr Camel

#### Abnormal chest X-ray

Bilateral lung opacities / white out

#### Respiratory failure

Onset within 1 week

#### Decreased PF ratio

PAO2/FIO2 ratio <300

### Symptoms of respiratory failure

NOT due to HF/fluid overload



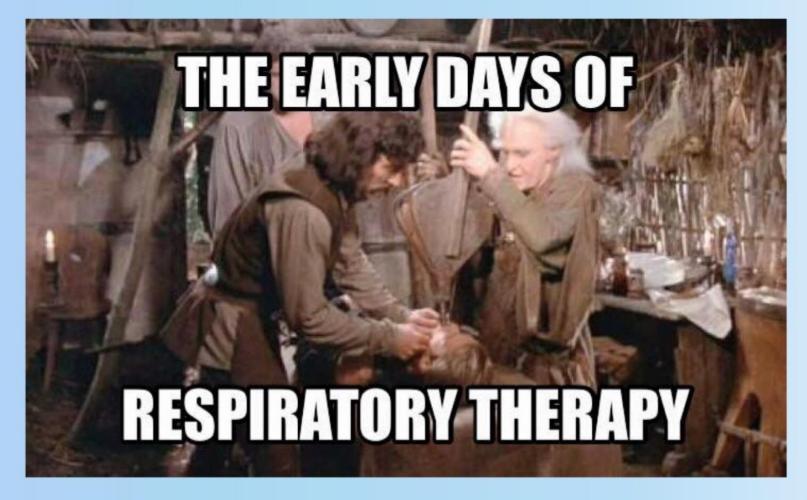
### You receive Mr Camel's chest x-ray:







# You successfully diagnosed Mr Camel with acute respiratory distress syndrome




He was sent to the intensive care unit where he was treated with

- → Mechanical ventilation
- → Broad spectrum antibiotics
- → Fluid management
- → Diuretics



### Good luck! ©



